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A Low-rank Structure of Fine-tuned Weights
As motivation for the use of LoRA in our setting, we conducted the
following experiment which reveals that the final weight updates
obtained from fully fine-tuning an image neural field often have
low rank across different layers.
Suppose 𝑓𝜃 : R2 → R3 is a neural field with 𝑚 hidden layers

trained to regress the RGB colors of a 2D image D. Denote the
hidden layer weights of 𝑓𝜃 by𝑊 𝑖

base ∈ R𝑛×𝑛 where 𝑖 = 1, . . . ,𝑚. We
perform a minor edit to D to obtain a new image D′. We then fine-
tune all the weights of 𝑓𝜃 to regress D′, yielding a new neural field
𝑓𝜃 ′ with weights𝑊 𝑖

fine-tuned ∈ R𝑛×𝑛 . By solving the rank-constrained
optimization problem

min
Δ𝑖 ∈R𝑛×𝑛

E
𝑥

[

((𝑊 𝑖
base + Δ𝑖 ) −𝑊 𝑖

fine-tuned)𝑥


2
2

]
(1)

𝑠 .𝑡 . rank(Δ𝑖 ) ≤ 𝑘

for each layer 𝑖 , where 𝑘 ∈ N controls the maximum rank of Δ𝑖 ,
and 𝑥 ∈ R𝑛 is sampled from the empirical output distribution of the
previous layer (𝑖 − 1) of 𝑓𝜃 ′ , we find that a low-rank factorization
of Δ𝑖 approximates the full update 𝑊 𝑖

base −𝑊 𝑖
fine-tuned with

minimal error while accounting for the layer’s input distribution.
For any choice ofmaximum rank𝑘 , this problem has a closed-form

solution (normalized optimal values shown in Figure 2 of the paper
for three different examples). This is because the distribution of the
input queries 𝑥0—representing normalized image coordinates—is
assumed to be Unif

(
[0, 1]2

)
. By pushing input samples through the

network, we are able to obtain an empirical distribution of each
layer’s output activations. In the following, we derive the closed-
form optimal value of (1) by transforming it into a problem where
the rank-𝑘 truncated SVD of a matrix is optimal.

Define 𝐷𝑖 :=𝑊 𝑖
base −𝑊 𝑖

fine-tuned . The objective function of (1) can
be rewritten as

E
𝑥

[

(𝐷𝑖 + Δ𝑖 )𝑥


2
2

]
= E

𝑥

[
𝑥𝑇 (Δ𝑖 )𝑇Δ𝑖𝑥 + 2𝑥𝑇 (𝐷𝑖 )𝑇 (Δ𝑖 )𝑥 + 𝑥𝑇 (𝐷𝑖 )𝑇𝐷𝑖𝑥

]
Authors’ Contact Information: Anh Truong, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, anh_
t@mit.edu; AhmedH.Mahmoud, Computer Science &Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, USA, ahdhn@mit.edu; Mina
Konaković Luković, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, USA, minakl@mit.edu; Justin
Solomon, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, USA, jsolomon@mit.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SA Conference Papers ’25, Hong Kong, Hong Kong
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2137-3/2025/12
https://doi.org/10.1145/3757377.3763882

The final term is constant with respect to the decision variable
Δ𝑖 , so we can safely ignore it for the purposes of solving problem 1:

= const + E
𝑥

[
𝑥𝑇 (Δ𝑖 )𝑇Δ𝑖𝑥 + 2𝑥𝑇 (𝐷𝑖 )𝑇 (Δ𝑖 )𝑥

]
= const + E

𝑥

[
𝑥𝑇 (Δ𝑖 )𝑇Δ𝑖𝑥

]
+ 2E

𝑥

[
𝑥𝑇 (𝐷𝑖 )𝑇 (Δ𝑖 )𝑥

]
= const + E

𝑥

[
Tr(𝑥𝑥𝑇 (Δ𝑖 )𝑇Δ𝑖 )

]
+ 2E

𝑥

[
Tr(𝑥𝑥𝑇 (𝐷𝑖 )𝑇 (Δ𝑖 ))

]
= const + Tr

(
E
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)
+ 2 Tr

(
E
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]
(𝐷𝑖 )𝑇Δ𝑖

)
by the cylic property of the trace operator and linearity of expected
value. Let 𝑆 := E𝑥 [𝑥𝑥𝑇 ] ∈ R𝑛×𝑛 . 𝑆 is positive definite, so we can
apply the Cholesky factorization to express it as 𝑆 = 𝐿𝐿𝑇 where 𝐿
is lower-triangular. So the above becomes

= const + Tr((Δ𝑖𝐿)𝑇Δ𝑖𝐿) + 2 Tr((Δ𝑖𝐿)𝑇𝐷𝐿)
Let𝑀 := Δ𝑖𝐿 and 𝐶 := −𝐷𝑖𝐿.

= const + Tr(𝑀𝑇𝑀) − 2 Tr(𝑀𝑇𝐶)
= const + ∥𝑀 −𝐶 ∥2𝐹 (2)

where the final equality follows from noticing that
∥𝑀 −𝐶 ∥2𝐹 = Tr(𝑀𝑇𝑀) − 2 Tr(𝑀𝑇𝐶) + Tr(𝐶𝑇𝐶)

and that 𝐶 is constant w.r.t. the decision variable Δ𝑖 .
Now, since 𝑆 is positive definite, we have that 𝐿 is invertible. This

implies rank(𝑀) = rank(Δ𝑖 ). Hence, by ignoring constant terms
w.r.t. Δ𝑖 in equation (2), we see that the minimizer of (1) is the same
as that of

min
𝑀∈R𝑛×𝑛

∥𝑀 −𝐶 ∥2𝐹 (3)

𝑠 .𝑡 . rank(𝑀) ≤ 𝑘

By the Eckart-Young-Mirsky Theorem, the minimizer of (3) is at-
tained by the rank-𝑘 truncated singular value decomposition of 𝐶 ,
that is,

𝑀opt =𝑈 diag(𝜎1, . . . , 𝜎𝑘 , 0, . . . , 0) 𝑉𝑇

where 𝐶 =𝑈 Σ𝑉𝑇 , Σ := diag(𝜎1, . . . , 𝜎𝑛). Therefore, Δ𝑖
opt =𝑀opt𝐿

−1.
We report the optimal objective value in Figure 2 of the paper,
normalized across different choices of 𝑘 independently per network
layer.
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Fig. 1. We also test our sequential LoRA algorithm for encoding an animated sequence. We encode 120 frames from the Big Buck Bunny animation.
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Fig. 2. Progression of SDF surface reconstructions using LoRA (top) and full
fine-tuning (bottom). Each column shows the extracted surface after a given
number of training steps (0, 100, 1000, 2000, Final). Despite the compressed
representation, LoRA rapidly tracks the improvements as of full fine-tuning
and recovers clean geometry at convergence.
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