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A Low-rank Structure of Fine-tuned Weights

As motivation for the use of LoRA in our setting, we conducted the
following experiment which reveals that the final weight updates
obtained from fully fine-tuning an image neural field often have
low rank across different layers.

Suppose fz : R2 — R3 is a neural field with m hidden layers
trained to regress the RGB colors of a 2D image D. Denote the
hidden layer weights of fp by bease € R™" wherei=1,...,m. We
perform a minor edit to D to obtain a new image 9’. We then fine-
tune all the weights of fp to regress D’, yielding a new neural field
for with weights Wﬁ"ne_tune 4 € R™" By solving the rank-constrained
optimization problem

Airelgnan IE [”((Wblase +A) - Wf;ne-tuned)x”;] 1

s.t. rank(A)) <k

for each layer i, where k € N controls the maximum rank of Al
and x € R" is sampled from the empirical output distribution of the
previous layer (i — 1) of fp, we find that a low-rank factorization
of Al approximates the full update Wbiase - Wéne_tune 4 with
minimal error while accounting for the layer’s input distribution.

For any choice of maximum rank k, this problem has a closed-form
solution (normalized optimal values shown in Figure 2 of the paper
for three different examples). This is because the distribution of the
input queries xo—representing normalized image coordinates—is
assumed to be Unif ([0, 1]%). By pushing input samples through the
network, we are able to obtain an empirical distribution of each
layer’s output activations. In the following, we derive the closed-
form optimal value of (1) by transforming it into a problem where
the rank-k truncated SVD of a matrix is optimal.

Define D' = bease - Wffne_mne - The objective function of (1) can
be rewritten as

2 [0 + a9

=E [xT(A)TA'x + 2xT (D) (A")x + xT(D')" D'x|
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The final term is constant with respect to the decision variable
A!, so we can safely ignore it for the purposes of solving problem 1:

= const + E [xT (A)T Alx + 2xT (D)7 (A))x]
=const+ E [xT(Ai)TAix] +2E [xT(Di)T(Ai)x]
X X

=const+E [Tr(xxT(Ai)TAi)] +2E [Tr(xxT(Di)T(Ai))]

= const + Tr (E [xxT] (Ai)TAi) +2Tr (E [xxT] (Di)TAi)

by the cylic property of the trace operator and linearity of expected
value. Let § = E,[xxT] € R™", S is positive definite, so we can
apply the Cholesky factorization to express it as S = LLT where L
is lower-triangular. So the above becomes

= const + Tr((A'L)TA'L) + 2 Tr((A'L)TDL)
Let M := A'L and C := —D'L.
= const + Tr(MTM) - 2 Tr(MTC)
= const + ||[M — C||2F (2)
where the final equality follows from noticing that
|M = C|[% = Tr(MT M) - 2Tr(MTC) + Tr(CTC)

and that C is constant w.r.t. the decision variable A‘.

Now, since S is positive definite, we have that L is invertible. This
implies rank(M) = rank(A’). Hence, by ignoring constant terms
w.r.t. Al in equation (2), we see that the minimizer of (1) is the same
as that of

min M - Cl|% 3)
MGRIIXYI
s.t. rank(M) <k

By the Eckart-Young-Mirsky Theorem, the minimizer of (3) is at-
tained by the rank-k truncated singular value decomposition of C,
that is,
Moyt = U diag(o, . .., 0%,0,...,0) VT

where C = UV, 3 = diag(oy, . .., 0n). Therefore, Aépt = OptL’l,
We report the optimal objective value in Figure 2 of the paper,
normalized across different choices of k independently per network
layer.
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Fig. 1. We also test our sequential LoRA algorithm for encoding an animated sequence. We encode 120 frames from the Big Buck Bunny animation.

0 100 1000 2000 Final

Fig. 2. Progression of SDF surface reconstructions using LoRA (top) and full
fine-tuning (bottom). Each column shows the extracted surface after a given
number of training steps (0, 100, 1000, 2000, Final). Despite the compressed
representation, LoRA rapidly tracks the improvements as of full fine-tuning
and recovers clean geometry at convergence.
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