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Figure 1: A sifted point cloud (right) retains much of the visual quality of the original (left), but using fewer points. 113k points
were reduced by 16% in 19 seconds. Sifted disks are maximal and satisfy the same sizing function as the original.

Abstract
We introduce the Sifted Disk technique for locally resampling a point cloud in order to reduce the number of points.
Two neighboring points are removed and we attempt to find a single random point that is sufficient to replace them
both. The resampling respects the original sizing function; In that sense it is not a coarsening. The angle and edge
length guarantees of a Delaunay triangulation of the points are preserved. The sifted point cloud is still suitable
for texture synthesis because the Fourier spectrum is largely unchanged. We provide an efficient algorithm, and
demonstrate that sifting uniform Maximal Poisson-disk Sampling (MPS) and Delaunay Refinement (DR) points
reduces the number of points by about 25%, and achieves a density about 1/3 more than the theoretical minimum.
We show two-dimensional stippling and meshing applications to demonstrate the significance of the concept.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling

1. Introduction

Maximal Poisson-disk Sampling (MPS) is a popular tech-
nique for generating random point clouds in the plane. Sam-
ple points are generated uniformly at random. Each sample

point is the center of a disk which precludes the introduc-
tion of any other sample within it. For a maximal sample,
there is no room to introduce another sample point, lead-
ing to the property that every point in the domain is within
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a sample disk. The sample points are separated-yet-dense:
no two points are closer than the disk radius, yet the disks
cover the entire domain. The minimum separation distance
is a lower bound on the minimum edge length in any trian-
gulation of the points, and the coverage property provides an
upper bound on the largest Delaunay circumcircle. Together
these bound the minimum (and maximum) angles in a De-
launay triangulation of the points. These properties are also
known as well-spaced [Tal97, HMP06].

Delaunay Refinement (DR) is the most popular triangu-
lation method in computational geometry [She96, She02].
Delaunay refinement follows a different construction than
MPS, introducing points locally and deterministically based
on the quality of an intermediate triangulation. But the end
result is also a well-spaced point set.

Being well-spaced is crucial for provable quality guaran-
tees in meshing applications: both the quality and the num-
ber of points affects the accuracy and efficiency of numerical
simulations. The smallest edge length often determines the
largest simulation time-step, e.g. in deformations and parti-
cle tracking schemes. The angles of the elements affect the
numerical accuracy, which may in turn affect the conver-
gence rate. Within a single step, processing time is typically
proportional to the number of points.

In graphics, two-dimensional meshes are ubiquitous in
online and offline rendering, animation, geometric algo-
rithms such as collision detection, etc. Real-time meshing
often benefits from offline preprocessing, regardless of of-
fline speed; e.g. mesh smoothing [Tau00].

Poisson-disk Sampling (PS) is widely used in graph-
ics. Lagae and Dutre [LD08] describe “sampling patterns
for a wide range of applications,” notably high-quality ray
tracing, as well as “object distribution, primitive distribu-
tion for illustration, and texture basis functions.” Bowers et
al. [BWWM10] also note “texturing, remeshing, subsurface
scattering, global illumination, non-photorealistic rendering,
and point-based rendering.”

Since generating a Maximal PS is difficult, historically
most applications have used non-maximal point clouds. Be-
cause PS only offers guarantees on the minimum point spac-
ing and not on domain coverage (i.e. it is an undersam-
pling), many applications desiring a sampling would benefit
from a maximal one. Even when points come from some
other process, maximality is often desired. For example,
in DR mesh generation, a maximal packing improves both
quality bounds and performance [AB04]. Recently algo-
rithms for generating maximal samplings have become effi-
cient enough for applications [Coo86, BWWM10, EPM∗11,
EMP∗12, Fat11, GM09, JK11, LWSF10, WCE07].

Our contribution. We have found that point sets generated
with the above methods have more points than are necessary
to achieve the well-spaced property. Because the cost of pro-

cessing or storing a point set grows with its size, reducing its
size without compromising its quality is a clear win.

In this paper we show that not only is this reduction pos-
sible, it can be done efficiently and profitably. The sample
count is reduced by about 25%. The density is about half-
way between the original point cloud and the theoretical
limit, or about 1/3 more points than the theoretical limit. The
theoretical limit is the vertices of a tiling of equilateral tri-
angles, with the longest possible edges for the disks to still
cover the domain. The equilateral tiling has no random struc-
ture and poor spectra for graphics. We do not know of a re-
liable way to obtain sparser point clouds than ours that still
satisfy the coverage requirement. We can sift a one-million-
point input sample in about 40 seconds. Having fewer points
is significant because each is a placeholder for some long
calculation, such as finite-element simulations for meshes or
interpolation or integration points for graphics. Since most
commonly used graphics algorithms are about linear-time in
the input size, a 25% reduction in points while maintaining
MPS quality typically results in a 25% speedup for the appli-
cation, essentially for free. High-quality renderings can take
hours; the time it takes to sift a sample is much less. The
same is true for meshes for finite element simulations.

Our method works on both constant-density and variable-
density distributions. We respect the original spacing func-
tion, but pick points that are more efficient in satisfying that
function. Thus we characterize our method as a resampling
rather than a coarsening. Unlike the more predictable tech-
niques of optimization-based point movement, this resam-
pling process, and its outcome, are random; There is lit-
tle impact on the Fourier spectrum of an MPS point cloud,
which is important for texture synthesis. We demonstrate
two-dimensional stippling and meshing applications.

Our sifting algorithm preserves the maximality property
regardless of the source, and makes the point density adhere
more closely to the sizing function. Off-centers is a variant of
Delaunay refinement that reduces the point density. Sifting a
uniform off-center point cloud doubles the reduction in point
density, and improves the spectrum.

We call our method “sifting.” We restrict our attention to
two-dimensions. Sifting in high dimensions would be sub-
ject to the same challenges as sampling in high dimensions.

2. Previous work

The computer graphics meshing literature has multiple ap-
proaches that reduce the size of meshes through various
approximations. For instance, progressive meshes [Hop96]
offers a continuous sequence of level-of-detail approxima-
tions of a source mesh, allowing tradeoffs between mesh size
and accuracy. Alternatively, multiresolution mesh represen-
tations [SG05] efficiently manipulate meshes exceeding the
size of main memory. A third option preserves appearance
while reducing mesh size [COM98]. These methods focus
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Figure 2: Left: DR circumcenter insertion left a gap between
the new (white) and old (black) points. Later this gap is
filled with another point, increasing the density. Right: ODR
avoids small gaps. The black points are co-circular (dashed)
with a third point outside the figure, the vertices of a Delau-
nay triangle. The small solid circles are the r coverage disks.

on reducing the mesh by approximating it, whereas we re-
duce the size without compromising the quality of the point
distribution.

Point cloud manipulation shares several similarities with
sifting. Simplification of point clouds can either remove
selected points, leaving a true subset of the original sur-
face [ABCO∗01], or resample the surface to create new
points [PGK02]. Both methods minimize error metrics, but
neither maintains the exact original properties of the surface.
These and many other methods leverage Delaunay triangu-
lations (DT) of the point set. Floater and Reimers [FR01]
performs 3d surface reconstruction from the local DT.

In mesh generation, Delaunay Refinement (DR) algo-
rithms incrementally insert points until output conditions are
achieved. Variants can be tailored to slightly different output
properties: e.g. minimum angle [Rup95] or Voronoi aspect
ratio [HMP06]. Chew’s first DR algorithm [Che89] targets
a particular mesh size; It is natural for comparing with uni-
form MPS since their outputs have identical maximality and
coverage properties [EMD∗11].

DR is typically based on circumcenter insertion. Circum-
centers are vertices in the Voronoi diagram, the points fur-
thest from the current sample points. Inserting centers is a
greedy strategy for increasing coverage; It can paint itself
into a corner and be forced to insert points in poor positions
later. A point could be placed in some neighborhood of a
circumcenter instead [CC09,FCC10]. Off-center point selec-
tion [Üng09] takes advantage of this freedom to place points
more strategically. The exact position is calculated from the
minimum angle of a triangle, with the goal of not leaving
small gaps; see Figure 2. The final result is a coarser point
cloud. More aggressive optimization upon insertion [EÜ09]
can yield further improvements in some targeted quantity
such as minimum Delaunay angle or Voronoi cell shape.

The bubble mesh [SG98] approach couples the adjust-
ment of the location of points with dynamically adding and
removing them.

Rather than optimize during the point sampling, we fol-
low a post-process sparsification, as e.g. [JÜ08]. Other mesh

(a) Our algorithm tries to replace two neighboring sample points, p
and q, with a single random point (left). The removal of candidates
p and q creates the uncovered void (right).

(b) The replacement point must cover the whole void. Only a subre-
gion of the void is good for covering void corner a (left). The sub-
region where a replacement sample covers both corners a and b is
even smaller (right).

(c) The resampling subregion is the intersection of the subregions for
all corners (left). Any random point from it would cover the whole
void (right).

Figure 3: Sifting two disks p and q from a maximal sample.

smoothing and optimization algorithms [TAD08, EÜZ09]
are typically focused on quality metrics and lose original
properties of the sample/mesh.

The authors are unaware of previous work that ad-
dresses the problem of reducing the size of a maximal
and/or well-spaced distribution of points without affecting
the maximality/well-spacedness of that distribution. One ob-
vious approach is to just sample with a larger radius, i.e.
a lower density. While simple, this increases the maximum
distance between a domain point and a sample point, i.e. it
is worse for interpolation and accuracy.

3. Algorithm overview

Figure 3 shows an overview of the sifted disk algorithm. We
start with a point cloud sample. The sample could come from
Poisson-disk sampling, Delaunay refinement, or any other
method. We try to reduce the sample size by replacing a pair
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(p,q) of samples with a single point o. The new sample pre-
serves the maximal and disk-free conditions, and hence pre-
serves the quality. For the non-uniform case, we perform a
conservative resampling by enforcing both conditions even
if the original did not locally satisfy the disk-free condition.

We iterate over all neighboring pairs of samples. We cre-
ate the void that is uncovered when p and q are removed.
We identifying a subregion of the void such that any sam-
ple point in it covers the whole void: equivalently, covers the
void corners. If this subregion exists, we replace p and q with
a random point o from it. Otherwise, we return p and q back
to the sample and try the next candidate pair. We terminate
when no candidate pair can be replaced. (A more aggressive
strategy would be to then try to replace three points with two,
etc.)

4. Algorithm details

We discuss the algorithm for the uniform case, constant r,
then extend to the nonuniform case, varying r(x). Given a
spacing constant r and domain D ∈ R2, a finite point set
X ⊂D is a maximal sampling if it satisfies two conditions:

∀xi,x j ∈ X , i 6= j : ‖xi− x j‖ ≥ r (1a)

∀p ∈ D,∃xi ∈ X : ‖p− xi‖< r (1b)

The first condition ensures that no two sample points are
closer than r to each other. The second condition ensures
every domain point is within r of some sample, and implies
maximality [EPM∗11].

Two points are neighbors iff their disks overlap. When
replacing p and q with o, we define subsample X ′ as the
neighbors of p or q, and D′ as the subdomain of D inside
the disks of p, q or X ′. The void V is the subdomain of D′
that is no longer covered, where (1b) does not hold, if p and
q are removed.

The replacement steps for a pair of neighbors follow. As
a preprocess we generate the Delaunay triangulation of the
sample, T . We also sort each sample’s neighbors by counter-
clockwise angular order. We enforce (1a) and (1b) for X ′∪o
and D′.
1. Retrieve the sorted neighbor lists of p and q, Lp and Lq.
2. Splice the two lists to form a periodic sorted list, Lpq, in

order around V .
3. Filter Lpq by discarding disks not on the boundary of V .
4. Generate the corners of V , the intersection point a of a

disk with its successor in Lpq touching V .
5. Choose a uniform random point o from V whose disk

covers the whole void, all of its corners. Replace p and q
in X by o and update T . If o does not exist, retain p and
q in X and try another pair.

4.1. Uniform sampling

Splicing the lists. Given Lp and Lq, the periodic sorted
neighbors of each of p and q, the goal is to obtain one list

Lpq in order around V; see the shaded region in Figure 4c.
In p’s list, Lp, simply replace q by q’s list (sans p). Remove
redundant points, i.e. each of the two common neighbors of
p and q should appear in the list just once.

Filtering Lpq. At this point, some disks in Lpq might not
contribute a corner to the void because they are blocked by
adjacent disks: e.g. p2’s disk in Figure 4b. Let l1, l2, l3 de-
note any three consecutive points in Lpq, and d1,d2,d3 their
disks. Let a be the intersection of d1 and d2 to the left of

−→
l1l2.

The case we need to detect is that a is not a corner because it
is actually inside the next disk, d3. Point a is inside d3 only
if d1 and d3 overlap, and l3 is also to the left of

−→
l1l2. Finding

a and checking if it is in d3 can be computed directly, but a
faster check (×3 speedup) is to check if the point c equidis-
tant from l1, l2, l3 lies inside d2. See “Correctness” below for
why these checks are equivalent.

Void corners. Find the void corners a by computing the in-
tersection of consecutive disks d1,d2, of points l1, l2 in Lpq,
and retaining the one to the left of

−→
l1l2; see Figure 4c.

Resampling. We find a point, o, whose disk covers all the
void corners while preserving the minimum separation dis-
tance. Actually computing the geometry of the pink sub-
region to sample from, Figure 3c, would be relatively com-
plex and expensive. Instead we use Ebeida et al.’s [EMP∗12]
flat quadtree method, which was developed for exactly this
task. The idea is to keep a set of squares that form an outer
geometric approximation to the pink region, try sampling
from the squares, and refine and discard squares if sampling
fails. We start with a set of squares containing the void, the
bounding box of the void corners. When a square is refined,
we check if it is too far away from a corner for a sample
point to cover the corner; these squares are completely out-
side the pink region in Figure 3c and are discarded. Squares
inside a disk of some li are also discarded. We sample o uni-
formly from the remaining squares. We accept the first sam-
ple whose disk covers all the corners; since a disk is convex,
it will also cover the entire void. If, after a constant num-
ber of attempts, no acceptable o was found, we refine all the
squares to better approximate the region and repeat. If no
squares remain, the pink region is empty and no such point o
exists; we return p and q to the sample and try another pair.
Otherwise, we replace (p,q) with o.

Retriangulation See Figure 5. The local triangulation is
performed by removing any edge between p or q and a point
in Lpq. We then calculate the Delaunay edges between o and
Lpq, possibly removing edges between points in Lpq. Com-
puting the local Delaunay triangulation for maximal disk-
free points has been described in detail [EMD∗11]. Because
of the angle bounds, the changes are local and do not propa-
gate beyond the void, and can be done in constant time.
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(a) Retrieval of disks bounding the
void. Here Lp is {p0, . . . p5} and Lq is
{q0, . . .q6}. Using p0 = q, q0 = p, p1 =
q6, and p5 = q1, the spliced list Lpq is
{q1, . . .q6, p2, . . . p4}

(b) We filter Lpq by removing any disk
that does not bound the void. Here p2 is
removed because the center of the circum-
circle of p1, p2, p3 is covered and p2 lies
on the outside of −−→p1 p3.

(c) The void corners are the intersection
of consecutive disks in Lpq. The corners
are the vertices of a polygon containing the
void. We retained 6 and discarded 6′ be-
cause 6′ lies to the right (outside) of −−→p3 p4.

Figure 4: Local sifting example. After generating void corners, we sample a replacement point from the void with the constraint
that its disk covers all the void corners.

Figure 5: Resampling requires local re-triangulation.

Correctness. For correctness we must prove that we found
at least all the disks bounding the void, then filtered only
those that did not contribute to the void. The first condition
is trivial: an uncovered corner ∈ d1 ∩ d2 is a point inside dp
or dq, so both l1 and l2 are neighbors of p or q and gathered
initially. (It can also be shown that these samples are vertices
of a Delaunay triangle.)

It remains to show that no filtered disk touches the void
V . A Voronoi cell V2 is defined as the set of points closer to
l2 than any other sample point. A Voronoi cell is bounded
by separators. A separator is the perpendicular bisector of
the segments between two sample points. These perpendic-
ular bisectors contain the Voronoi edges, and also the chord
between the intersections of two circles.

In particular, we show d2 does not contribute a corner iff
the point c equidistant from l1, l2, l3 lies inside d2. The left
intersection a of d1 and d2 might possibly bound the void.
See Figure 6a. The point c equidistant from points l1, l2, l3 is
a Voronoi vertex, the center of the Delaunay circumcircle of
the three points. The perpendicular bisector of l1l2 contains
a, c, and the Voronoi edge e12 separating the Voronoi cell V1
for l1 from V2 for l2. If c lies outside d2, then r = ‖a− l2‖<
‖c− l2‖= ‖c− l3‖. Moreover the segment ca lies inside e12;
specifically a lies outside V3 and hence ‖a− l3‖> ‖c− l3‖;
therefore ‖a− l3‖> r and a is outside d3 and is a void corner.

(a) Uniform, Voronoi vertex
a ∈ d3⇔ c ∈ d2.

(b) Nonuniform, power
vertex a ∈ d3⇔ cp ∈ d2.

Figure 6: Corner coverage detection.

Conversely, if c lies inside d2, then r = ‖a− l2‖> ‖c− l2‖=
‖c− l3‖. Moreover, a lies in V3, so is closer to l3 than to l2:
‖a− l3‖< ‖a− l2‖= r. Hence a lies inside d3.

4.2. Nonuniform sampling

Unfortunately, given a non-constant spacing function r(x)
over domain D, it is not in general possible to simultane-
ous guarantee conflict-free disks (1a) and complete domain
coverage (1b). Mitchell et al. [MREB12b] describes several
generalizations of (1a) and (1b). We choose the smaller-disk
conflict criteria MPS as our preferred input, and resample
using a form of the smaller-disk and prior-disks criteria, be-
cause they provide coverage and a simple definition of the
void. Specifically, point o is a valid resampled point if it sat-
isfies two conditions:

∀xi ∈ X ′ : ‖xi−o‖ ≥ r(xi) (2a)

∀p ∈ D′,∃xi ∈ {X ∪o} : ‖p− xi‖< r(xi) (2b)

As in the uniform case, we enforce the conflict and cov-
erage conditions locally. The original sample might not have
satisfied (2a), but we require it to hold when we resample
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anyway. In that sense our resampling is a strict improvement.
Nonuniform sampling requires slightly different handling in
the Filtering and Resampling steps. (By non-uniform we
mean that the sampling density varies spatially, but the prob-
ability of selecting the next random point within a given sub-
region is still proportional to the subregion’s area.)

The key change for the nonuniform case is to use a
weighted power diagram and its dual Regular triangulation
[AE84]. The standard construction uses weights equal to
the disk radii (sizing function). There is a nice geometric
correspondence between power diagrams and our disks and
points [YW12]. As before, two points are neighbors if their
disks overlap. The line separating the Voronoi cells of neigh-
bors l1 and l2 is straight and perpendicular to l1l2 but shifted
if the disks d1 and d2 have unequal radii: it is the line pass-
ing through the intersection points of d1 and d2. As in the
Voronoi diagram, for three weighted points the three sepa-
rating lines meet at a common point, the power vertex cP.

Filtering. For the equidistant-point-in-d3 check we use the
power vertex instead of the Voronoi vertex. The correctness
of this follows directly from the redefinition of distance and
separators. Figure 6b shows an example where using the
power vertex cP gives the correct answer, but the unweighted
Voronoi vertex cV does not.

Resampling. In the uniform case, the disk of any sample in
a flat quadtree square cannot cover a corner if the square is
farther than r from the corner. Such squares are discarded.
For the nonuniform case, the radius is changing. Since we
cannot check the radius at every point in the square, we adopt
a conservative test based on the sizing function (radius) at
the square’s center, the size of the square, and the maximum
rate of change of the sizing function [MREB12a]. The test
is a sufficient condition for discarding the cell, and becomes
more accurate (closer to necessary) as the square is refined.

4.3. Other conflict criteria

Mitchell et al. [MREB12a] defines other conflict conditions
such as the larger disk containing the center of the smaller
disk, or considering the order in which the samples were
drawn. For these, revising the condition of when to discard
a flat quadtree square is fairly straightforward. In addition,
the mean-radius conflict condition is interesting because it
produces a (half-radius) disk packing. The main challenges
are that the definitions of corners and the sample region may
depend on the unknown replacement disk. We leave these
variations, and higher-dimensions, for future work.

5. Maximal point cloud densities

Delaunay refinement is the worst; off-centers is better; and
sifting is the best, in terms of density. Table 1 summarizes the
average point density and Delaunay edge lengths (separation

sample point relative Delaunay
type density density edge lengths

4(r) 2√
3

r−2 3 {r}
�(r) r−2 2.60 {r,

√
2r}

7(r) 4
3
√

3
r−2 2 {r,

√
3r,2r}

DR(r) 0.75r−2 1.95 [r,2r)
MPS(r) 0.70r−2 1.82 [r,2r)
ODR(r) 0.64r−2 1.66 [r,2r)
sDR(r) 0.57r−2 1.48 [r,2r)

sMPS(r) 0.51r−2 1.33 [r,2r)
sODR(r) 0.51r−2 1.33 [r,2r)
�(
√

2r) 1
2 r−2 1.30 {

√
2r,2r}

4(
√

3r) 2
3
√

3
r−2 1 {

√
3r}

Table 1: (Average) point density and edge length ranges of
different maximal samples with uniform radius r.

distances) before and after sifting. Figure 8 shows quality
plots before and after sifting. We include the average output
of some common algorithms. We also include some extremal
distributions, in order to provide a theoretical upper bound
on how much a point cloud could be improved.

• 4(r) is the points at the corners of the lattice of equilateral
triangles with side length r.

• �(r) is the square lattice with side length r, diagonal
length

√
2r.

• 7(r) is the hexagonal lattice with side length r, diagonal
length 2r.

• MPS is Maximal Poisson-disk sampling.
• DR is Delaunay refinement, Delaunay circumcenter inser-

tion.
• ODR is off-center Delaunay refinement.
• sMPS, sDR, sODR are sifted MPS, DR, and ODR.

4(r) is the densest sampling respecting the minimum
separation distance, whereas4(

√
3r) is the least dense sam-

pling that still respects the maximality criteria. �(
√

2r) and
7(r) have the longest Delaunay edge lengths possible, 2r,
while still respecting the maximality criteria. (The densest
packings by dimension is a popular research topic [NS12].)

All these distributions satisfy the same inhibi-
tion/coverage criteria, but the variations are significant:
4(r) has three times as many points as 4(

√
3r), and half

the maximum edge length of �(
√

2r) and 7(r).

The aim of sifting is to obtain random points with density
close to that of 4(

√
3r). In the case of MPS, we maintain

the inherent (and desirable) randomness of the sample. In
the case of DR and ODR, we introduce desirable random-
ness. Sifting MPS results provides two main advantages over
ODR: a larger reduction in the size of the sample as well as
a clean Fourier spectrum, discussed in Section 5.1.
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For the algorithmically generated clouds, each sifted
cloud has fewer points than its original cloud; indeed, every
sifted cloud has fewer points than any of the original clouds!
Quantitatively, the relative density is reduced to about that
of the sparse square lattice. Off-centers [Üng09] was lauded
as a signal achievement in reducing the point density of DR.
In the uniform case it reduces relative density from 1.95 to
1.66, whereas sifting reduces DR about 50% more, to 1.48.
Furthermore, sifting reduces ODR from 1.66 to 1.33, twice
the improvement of ODR alone. Sifting also improves the
spectrum. (Off-centers reportedly produces a larger benefit
over DR in the non-uniform case.) sMPS and sODR pro-
duce about the same number of points, but MPS starts with
7% fewer points than ODR. The completely structured mesh
4(
√

3r) has the theoretical minimum density, 1, but has a
terrible spectrum. Sifting transforms point clouds closer to
the theoretically best density, while still providing a good
spectrum for graphics.

Variance in the MPS and sMPS densities decreases as the
sample size grows. For DR, ODR, and their sifted variants,
sample sizes are dependent on the precise specification of
the algorithm (e.g. queue ordering); the results are given for
the most common settings.

5.1. Output spectrum, triangle angles and edge lengths

We analyze quality with a variety of sample distribution
properties. The Fourier spectrum is a useful measure for
demonstrating “blue noise” properties of the output (particu-
larly desirable in computer graphics). The Point Set Analysis
(PSA) [Sch11] tool allows standardized comparison plots.
Additionally, we consider histograms of Delaunay-Voronoi
diagram properties: Voronoi aspect ratio, angles of Delau-
nay triangles, and Delaunay edge lengths. We compare re-
sults in Figures 7 and 8. Sifting tends to smooth the distri-
butions, and shift them towards larger Voronoi cells, longer
mesh edges, and smaller point density.

In addition to an artifact-free Fourier spectrum, MPS pro-
duces smooth histograms for each of the Delaunay metrics.
This makes intuitive sense: random sampling should ensure
nearby quantities have similar probability. DR with strict cir-
cumcenter insertion typically gives a clean Fourier spectrum.
On the other hand, the ODR spectrum has a different nature
than the regular diminishing oscillations seen with MPS and
DR. This change is likely due to the way the algorithm in-
serts points much more systematically, thus promoting lo-
cally regular patterns. DR and ODR angle histograms are
not smooth but instead have a noticeable peak around 60
degrees. By design, ODR produces longer Delaunay edge
lengths than DR (or MPS). While the most probably MPS
and DR Delaunay edge lengths are near the disk radius, ODR
produces the most edges near 1.7 times the disk radius. This
reflects the attempt by ODR to space points in a similar fash-
ion to the sparsest maximal equilateral lattice.

The sifting algorithm promotes some similar changes in

M
PS

sM
PS

D
R

sD
R

O
D

R
sO

D
R

Figure 7: Spectrums before and after sifting. The left is sam-
ple points; middle their Fourier spectrum; and right their
radial power. Computed with PSA.

these various metrics independent of the input sample. Com-
pared to non-sifted algorithms, oscillations in the Fourier
spectrum are compressed and the first peak is higher. The re-
sulting spectrum retains the desirable characteristics of min-
imal low frequency energy and no radial artifacts. Sifting of
DR and MPS alters the Delaunay edge length histograms, re-
placing triangulations with predominantly short edges near
the disk length with ones with mostly longer edges between
1.6 and 2.0 times the disk length. This represents significant
progress towards the smallest possible sampling: 4(

√
3)

with all edge lengths
√

3 ≈ 1.7. Sifted ODR has more long
edges than its unsifted counterpart, but the impact is less dra-
matic since the ODR samples already have a larger share of
long edges. Sifting alters the DR and ODR histograms but
generally does not eliminate their non-smooth nature.

Finally, we note that sifting does not introduce a direc-
tional bias in the Delaunay edges; see Figure 9a. Uniformly-
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Figure 8: Impact of sifting on meshing quality measures, for different input.
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Figure 9: Sifted edge orientations and sifting time.

oriented edges is an important property for certain meshing
and fracture simulation applications [EKL∗11].

5.2. Performance

On average, sifting an MPS point cloud requires 4 times
as long as generating the MPS sample. We sift one million
points in about 40 seconds, and the sifting process usually re-
duces the size of the sample by about 25%. Empirically our
sifting code takes linear time as demonstrated in Figure 9b.

There are also some theoretical reasons to expect linear
run-time: there are a linear number of pairs and each takes
constant time to consider. For the uniform case, the num-
ber of neighbors of a single point is a constant [EPM∗11,
EMD∗11]. This means that there are a linear number of pairs
before replacement. Empirically a linear number of pairs
(half of them) are replaced, so a linear number of pairs to-
tal are considered. Moreover, all of the local data structures
such as neighbor lists are of constant size. The flat quadtree
method is empirically linear in the number of samples pro-
duced [EMP∗12]. So the steps for a single pair take constant
expected time. This will also hold in the non-uniform case
if the sizing function (disk radii) does not vary too quickly,
but with worse constants [MREB12a]. In any case, run-time
is not worst-case linear because the location of a resample
candidate is random, and its location could be persistently
perverse, albeit with low probability.

MPS sMPS DR sDR

interior points 580 419 580 417
. . . reduction - 27% - 28%

min angle 30.6 30.5 31.7 30.6
max angle 115.5 114.7 110.7 115.5

min Vor ratio 1.30 1.23 1.26 1.24
max Vor ratio 1.994 1.998 1.982 1.998

Table 2: Mesh sifting savings and quality.

6. Applications

6.1. Stippling

We describe the process used to produce our stippling im-
ages, such as Figure 1. Given a grayscale image, we perform
edge detection.

We define a sizing function:

r(x) = rmin +(rmax− rmin)g
2(x) = rmin(1+Ag2(x))

Here g(x) ∈ [0,1] is the grayscale value of the pixel contain-
ing x, and is constant over the pixel. Here rmax ⇔ A scales
g and controls the contrast in the stippling density; we chose
A = 9. Here rmin is the length of the diagonal of a pixel. A
lower bound of rmin on the sizing function ensures that each
pixel accepts at most one sample point. This has the affect
of hiding the jumps in g(x) at pixel boundaries.

We generate an MPS using the minimum-disk conflict cri-
teria: ‖xi− x j‖ ≥min(r(xi),r(x j)). We find a Regular trian-
gulation using r(x) for the weight of x. Finally, we sift the
point set as described in Section 4. To produce the image we
overlay the sifted points with the detected edges.

6.2. Meshing

Figure 10 shows uniform point clouds and Delaunay trian-
gulations before and after sifting. Table 2 shows the fraction
of interior points saved, and quality measures. In the table,
"Vor ratio" means the aspect ratio of a Voronoi cell: the ra-
tio of the distances from the farthest Voronoi vertex to the
sample, and the closest Voronoi edge to the sample.

© 2013 The Author(s)
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(a) MPS. (b) sMPS. (c) DR. (d) sDR.

Figure 10: Mesh sifting application.

7. Conclusions

We have shown that it is possible to resample a point cloud to
use fewer points, while still respecting the input sizing func-
tion. We can still produce well shaped meshes and random
samples for stippling. An important extension is to curved
surfaces, resampling based on the curvature function and
adaptively by viewpoint. In the future we wish to explore
higher dimensional sampling problems.

We appear to be able to resample over rapidly changing
sizing functions. We would like to explore the theoretical
limits.
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