Exercises in High-Dimensional Sampling:
Maximal Poisson-Disk Sampling and k-d Darts

Mohamed S. Ebeida, Scott A. Mitchell, Anjul Patney, Andrew A. Davidson,
Stanley Tzeng, Muhammad A. Awad, Ahmed H. Mahmoud,
and John D. Owens

1 Introduction

1.1 Maximal Poisson-Disk Sampling (MPS) Definition

Sample points are called well-spaced if they have a limited ratio between the
maximum distance between any domain point and its nearest sample point, and the
minimum distance between two sample points. A well-spaced sampling is efficient
at exploring a space. The maximum distance ensures that the domain is adequately
covered and reduces interpolation error. The minimum distance ensures that we do
not waste time or generate noise with samples that provide similar information to
nearby samples. Typically well-spaced is defined locally, by stating that the aspect
ratio of Voronoi cells is bounded. Samples that have random positions are often
preferred because they do not introduce directional bias in the estimates.
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Fig. 1 A maximal Poisson disk sample over a non-convex domain and a uniform sizing function

Maximal Poisson-disk Sampling (MPS) is a process that selects a random set
of points, X = {x;}, from a given domain, &, in some d-dimensional space. The
samples are at least a minimum distance apart, satisfying an empty disk criterion:
Eq. (2). For simplicity we focus on the uniform case, where the disk radius, r,
is constant regardless of location or iteration. Inserting a new point, x;, defines
a smaller domain, ¥; C &, available for future insertions, where &, = ¥, see
Eq. (1). The maximal condition, Eq. (3), requires that the sample disks overlap, in
the sense that they cover the whole domain leaving no room to insert an additional
point. This property identifies the termination criterion of the associated sampling
process. Bias-free or unbiased means that the likelihood of the next sample being
inside any remaining subdomain is proportional to the area of the subdomain; see
Eq. (1). This is uniform sampling from the uncovered area, equivalent to uniform
sampling over the entire domain, and rejecting already-covered points. See Fig. 1
for an example MPS over a non-convex domain. Extending MPS disks to squares,
or ellipses and rectangles in anisotropic spaces, is natural, yet unexplored.
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1.2 Applications of MPS

Random point distributions, including MPS, have found widespread use in computer
graphics [17, 18]. Most applications are in dimensions below 6. Rendering Sect. 5.2
makes use of sampling light rays. The global illumination problem is concerned
with computing indirect lighting, light from sources that are reflected off surfaces
before illuminating an object in a scene. Computing the light in a scene exactly is
intractable because of the number of combinations of light sources, ray directions,
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Fig. 2 Fracture after injecting CO, below caprock. The color represents maximum principal
stress. The initial fracture joints are sealed, but opened and spread due to the high injection
pressure. (a) Initial Voronoi mesh. (b) Early time. (¢) Late time

surface reflection angles, and observer positions. This is made worse if these
quantities are unknown a priori, such as the location of an observing character in a
game. An approximate solution makes use of MPS points. These points sample the
scene space, and we can precompute the approximate contribution of each sample
point, the inter-sample transmissions. Then, in real time, we may magnify by light
source intensity and interpolate and combine with other information. A similar MPS
sampling and workflow is done for texture synthesis. A small piece of a texture is
placed at each MPS sample point, and the boundaries between patches are blended
S0 as not to stand out to an observer.

In these graphics applications and some others, all three properties of MPS are
desired: maximality ensures the accuracy of the sampled approximate solution;
empty disk ensures efficiency by avoiding nearby, redundant points; and bias-
free avoids artificial visual artifacts, repeating patterns, that a deterministic regular
spacing produces. Humans are expert at detecting patterns, even imagining them
where none exists. The distribution of retinal cells in our eyes has a Fourier spectrum
much like that of MPS, which may help explain why MPS works so well.

MPS points are well-spaced, which leads to meshes with well-shaped elements.
Other meshing algorithms generate well-spaced points, but MPS is also random.
For simulating fracture, e.g. for carbon sequestration in Fig.2, meshes with both
properties are required [2, 7]. The mesh randomness models some of the natural
material strength variability. Generating different meshes for the same geometry
using the same sizing function provides a useful tool to study the sensitivity of the
solution to the mesh, complementary to refinement studies; see Fig. 6a.

1.3 Potential Ties to Computational Topology

We speculate that some MPS techniques and applications may be useful for analysis
of data for computational topology. For example, as in global illumination, MPS
could be used as cluster centers as a form of resampling the domain data, to reduce
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the size of a computational topology point cloud. MPS processes could also be used
to generate the initial data points, perhaps modified to place more points where they
are topologically significant. In particular, many computational topology algorithms
rely on a mesh. Our sampling techniques can be used to create such a mesh. Going
further, we may circumvent the need for a mesh by using the structure implied by the
disks. For example, we are investigating implicit Voronoi diagrams for traversing a
point cloud to construct the Morse-Smale complex.

One recent use of MPS points in high dimensions is real-time robot motion
planning, where the space is the configuration space of the robot and its obsta-
cles [19]. The challenges for motion planning are similar to those for some discrete
computational topology calculations. Both rely on an imperfect representation of
the space by point clouds. Algorithms for both problems typically suffer from
the curse of dimensionality, and the point clouds are typically high dimensional.
In motion planning the goal is to find one path between two points, which has
similarities to finding Morse-Smale or Reeb graph paths, and contrasts to trying
to characterize the entire space in homology calculations. Recently a realtime robot
motion planning problem was solved using our MPS sampling of its 23-dimensional
configuration space, so there is hope that large spaces from topology might become
computationally tractable as well. Conversely, it is possible that computational
topology techniques for finding smooth and short paths, e.g. homology generators
and Morse-Smale paths, could be used to smooth and shorten a robot path. Smooth
and short paths mimic human motions and are more efficient.

2  MPS Algorithms in Low Dimensions

2.1 Algorithmic Challenges

Poisson-disk sampling is defined as a serial statistical process of rejection sampling:
generate a disk uniformly at random and reject it if its center lies inside a prior disk.
A maximal sampling is defined as achieving the limit distribution. A straightforward
implementation of the statistical process is called “dart throwing,” where a dart is
synonymous with a candidate disk center point. In dart throwing, most darts are
accepted in the beginning of the process, but the likelihood of accepting the next
point is proportional to the volume fraction of the domain left uncovered by a disk,
which typically becomes vanishingly small as the process continues.

A process definition is not the same as an output definition, nor necessarily the
most efficient way of achieving that output. (Consider defining “sorted order” as the
output of the bubble sort process. Only after “sorted order” is defined independent
of the process that produced it do we have the chance to discover quicksort.)
Unfortunately we (the community) do not have a precise closed-form description
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of the MPS output distribution, nor are we sure that it is the ideal for random
well-spaced points [14]. One branch of research has modified the MPS process in
order to achieve efficiency [5]. Our (the authors’) first solutions are in a different
research branch, where we propose algorithms that produce equivalent outputs to
dart throwing, but more efficiently.

2.2 Our Algorithmic Solutions

In particular, to find an efficient equivalent process, we rely on the observation that
the probability of introducing the next disk center in any uncovered subregion is
proportional to the area of the subregion. We use a background grid subdivision of
the domain to track a superset of the remaining uncovered subregions. Cells that
are completely covered by a single disk are discarded. Efficiency follows from the
superset being not much bigger than the uncovered region. The background grid is
uniform with cell diagonals of length r. This size ensures a cell can have at most one
point, whose disk completely covers the cell. The background grid also speeds up
retrieving nearby disks, to check if a sample point is inside one. We now summarize
two variations that use this grid [11, 12].

2.2.1 Efficient MPS by Polygon Tracking

The first MPS algorithm we developed has two phases [12]. The first phase is dart
throwing, but each dart is selected within a grid cell, not the entire domain. After
a number of dart throws proportional to the number cells, we switch to the second
phase. We further refine each cell by constructing a polygon that is closer to the
uncovered region inside the cell, but is still a superset; see Fig. 3. Now we do dart
throwing inside the polygons: we select a polygon uniformly by area, then a dart
uniformly inside it. If the dart is uncovered we accept it and update the polygons.
The chance of a dart being uncovered is provably large, which leads to a provable
expected run-time of E(n logn). (There is typically no deterministic time bound,
e.g. O(nlogn), for these types of algorithms because of the random decisions they

Fig. 3 Generating a tight polygonal superset of the uncovered regions. From left to right, we start
with the cell, then subtract disks. We use the chords instead of the arcs between intersection vertices
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must make.) Unbeknownst to us there was a prior method with the same guarantees
of maximality, bias-free, and E(n logn) time [15]. It uses the evolving Delaunay
triangulation to keep track of the remaining void. Ours [12] was the first method
based on grids with these guarantees; grids are preferred in some settings due to
their locality, simplicity, and speed. Our method was easily parallelized on a GPU.
However, keeping track of polygon intersections is both cumbersome and requires
a large amount of memory. If we increase the domain dimension the memory
consumption explodes, restricting this method to low-dimensional spaces. The next
method we developed addresses these shortcomings for slightly higher dimensions,
and we prefer it even for lower dimensions.

2.2.2 Simple MPS by Implicit Quad-Trees

The second method [11] we developed, Simple MPS, maintains all of the desirable
qualities of our previous method, Efficient MPS [12], namely maximality and bias-
free, with the added benefits of being simpler to code; using less memory; faster
run-time even in low dimensions and scalable to higher dimensions in practice
(but without a run-time proof). It starts with dart throwing in the background grid;
described in Sect. 2.2.1 and identical to the first algorithm [12]. However, instead of
proceeding to polygons, we simply subdivide all the remaining child cells. Covered
child cells are discarded, and we repeat the algorithm on the remaining cells. Since
the cells are all the same size, it is easy to represent them by indices, and we do not
need the overhead of a tree as in a true quadtree.

The key to this strategy’s efficiency is that the collection of active cells is a
close approximation to the entire uncovered area, even if one particular cell is
much larger than the uncovered area it encloses. In practice the number of cells
decreases geometrically per refinement, which helps both runtime and memory, and
allows us to reach maximality by refining down to machine precision. We were
able to maximally sample 6d domains on a CPU. On the GPU, we sampled at an
impressive rate of 1 M samples/s in 2d and 75 K samples/s in 3d. More details on
how to parallelize, and proofs of maximality and bias-free, can be found in our

paper [11].

2.3 Variable Radii MPS

We define two useful variations of MPS [16]. In the first version, the size of the
disks varies spatially over the domain; see Fig. 5b for a classic stippling application.
We still get locally well-spaced points if this variation is slow, e.g. the disk sizing
function satisfies a Lipschitz condition. The quality of the meshes generated from
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Fig. 4 Variable radii MPS. (a) Two-radii, . > r . (b) Spatially varying radii

those points degrades smoothly as the variation increases, up to some critical
threshold after which there are no guarantees. The run-time also increases with the
variation, because proximity checks must search a larger neighborhood. Spatially
varying radii had been considered previously by other authors [3], but we appear to
be the first to quantify these conditions and their effects [16].

If the radii of two disks differ, there are several ways of defining “conflict,” the
conditions under which a dart is rejected because it fails to satisfy a version of
Eq. (2). There are variations based on size and generation order. Each variation has
advantages and disadvantages. Defining conflict as the smaller disk containing the
center of the larger disk provides the best quality and it can tolerate the largest
Lipschitz constant (< 1), but generates the largest point sets. If we define a conflict
as a candidate disk center lying inside a previously accepted disk, then this is the
easiest to implement, as it is a minor change to Simple MPS and other algorithms.
However, it has the biggest restriction on the Lipschitz constant (< 1/2) and
provides the weakest output quality guarantees. We have also explored sifted disks
for reducing the discrete density of a maximal point set, by removing and relocating
points, while still maintaining the MPS conditions [9].

Our second useful variation of MPS [16] is to use two radii for each point,
two-radii MPS; see the concentric blue and red disks in Fig.4. We decouple the
maximality (coverage, blue) and conflict (empty-disk, red) conditions, by using
different disk radii for each. I.e. we replace the disk-free “r” in Eq.(2) with ry,
and replace the coverage “r” in Eq.(3) with r.. One benefit of a larger coverage
radius r, is a smoother noise spectrum [20], defined by the Fourier transform of
all pairwise point distances; see Fig. 5. We have also explored adapting a point set
to obtain a smaller coverage radius, which improves interpolation error and mesh
quality, by a method we call opt-beta, locally optimizing the position of nodes [6].
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Fig. 5 Spectral properties [20] of single-radii and two-radii MPS. (a) Single radius MPS. (b) Two
radii, r. = 2ry

3 Meshing Algorithms Based on MPS

We consider two types of meshes: constrained Delaunay triangulations [10] and
Voronoi polyhedra [8]. See Fig.6 for triangles and Fig.8 for poyhedra. MPS
produces well-spaced points, which can lead to well-shaped elements immediately,
without the need for post-processing such as smoothing or edge swapping; see
Fig. 7b. For Delaunay triangulations we must place points exactly on the domain
boundary to get a conforming mesh. We must place boundary points more densely
than in the interior to ensure good quality triangles. In Voronoi meshing, the MPS
points are the Voronoi cell seeds, and it is better if the points lie strictly interior to
the domain, and the cells are clipped by the domain boundary. Using interior points,
cells have better aspect ratios, and the Voronoi mesh is smaller; see Fig. 8 cut-away.

Delaunay refinement [4] is the most popular method for well-spaced points and
well-shaped triangles. It creates triangles first, and adds points to remove bad-
quality triangles. In contrast, MPS generates well-spaced points first, and only forms
triangles at the end. The theoretical guarantees about the outputs, the numbers of
points and elements’ qualities, are nearly identical. In practice, freedom from the
vagaries of intermediate triangles appears to allow MPS to change mesh size more
quickly [1], and more closely adhere to a sizing function, for the same quality
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Fig. 6 Delaunay triangulations via Poisson-disk sampling. (a) Two random meshes with the same
radius and domain. (b) Random meshes of non-convex domains. Red internal interfaces are
represented in the mesh
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Fig. 8 MPS Voronoi meshes. The boundary elements are nearly as large and well-shaped as the
interior elements. Operations are local so it is easy to handle complicated global topology
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requirements. The local nature of MPS operations leads to near-linear time in serial;
see Fig. 7. It also leads to easy parallelism with little communication [10]. In contrast
Delaunay refinement must build very large intermediate triangles between distant
points.

4 Sampling in High Dimensions
4.1 Algorithmic Challenges

Although the definition of MPS is dimension-independent, some properties of the
distribution change as the dimension increases, and the algorithms that work well
in low dimensions take more memory and time. High-dimensional spaces present
several challenges. As dimension increases, the volume of a sphere relative to its
bounding box decreases, and relative to its inscribed box it increases. A unit box
can contain an exponential-in-d number of unit disks. The box becomes a worse
approximation of a sphere, and this dooms grid-based methods as expensive in time,
memory, or both. Regardless of the methods used to generate the sampling, each
disk can have exponentially more nearby disks as the dimension increases. This
increases the combinatorial complexity of computing intersections of disks, or disks
with grids.

If we take a step back from MPS, a typical underlying goal is to sample the
space in a way that gives unbiased estimates, with low variance, of some quantity.
Typically this still means our sampling should be random. However, points are just
one way of sampling, a zero-dimensional way. MPS points are chosen uniformly
at random by volume without regard to the shape of the domain. Thus it is hard to
hit narrow regions with point samples, even though some of their dimensions might
be large. In particular, in standard MPS algorithms it is hard to tell if maximality
has been reached and the domain is covered by disks. More generally, it is hard to
track narrow regions of interest. In uncertainty quantification, the domain may be the
parameter space of a simulation, and the region of interest is where the simulation
returns a value below a threshold. Typically the simulation is more sensitive to some
parameters than others, so this subregion is narrow in those dimensions, but large in
the insensitive parameter directions.

4.2 Algorithmic Solution: k-d Darts

To address such a scenario, rather than evaluating a function at a single point,
we consider higher-dimensional evaluations along k-dimensional hyperplanes or
“flats” [13]; see Fig. 9. Initially, we defined a “k-d dart” as a set of axis-aligned
hyperplanes spanning all combinations of k free and d — k fixed coordinates. How-
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99 Point Darts Six Line Darts One Plane Dart

Fig. 9 Sampling a narrow region with hyperplanes increases the amount of information we
capture. While the number of random points landing in the gray area approaches zero as its
thickness decreases, each random line is destined to capture a portion of it

ever, further analysis and experimentation showed that just picking k-dimensional
hyperplanes with random free-coordinate indices is simpler and works just as well.
This is all predicated on the assumption that it is possible to evaluate a function
along a flat. A particularly nice situation is when the function is analytic, and we
can substitute the flat’s fixed coordinates for its parameters. As a last resort, one
could estimate the evaluation of a function along a flat numerically. In general the
cost of evaluating a higher-dimensional flat is typically larger than a 0-d flat (i.e. a
point). However, the amount of information gained and the ability to find narrow
regions is often worth the cost. We get faster convergence, and higher quality in our
examples.

5 High-Dimensional Algorithms Using k-d Darts

We next show the utility of darts over several algorithmic examples: generating
relaxed maximal Poisson-disk samples, approximating depth of field blur [13,21],
and volume estimation [13].

5.1 Relaxed Maximal Poisson-Disk Sampling (RMPS)

In a maximal Poisson-disk sample, the coverage disks overlap to cover the entire
domain, leaving no room to increase the sample size. At maximality, the achieved
coverage radius 7. is at most the prescribed conflict radius r; recall Sect.2.3.
Achieving this condition is extremely hard in high dimensions (e.g. d > 6). A
relaxed version of this condition allows the coverage disks to be slightly larger than
the conflict disks, quantified by their ratio, the distribution aspect ratio f = r’—; >
1.0. Increasing the allowable upper bound on 8 makes solving the problem easier.
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k-d darts [13] utilize line darts to capture the narrow voids between existing conflict
disks while simultaneously estimating the volume of the remaining void. Line darts
are much faster than point darts for RMPS, because it is fast and easy to subtract
a set of spheres from an axis-aligned line. The remaining segments are uncovered,
and we introduce a new sample along them.

Our k-d darts RMPS method produces nearly-maximal distributions whose
spectral properties (randomness) are nearly identical to those of MPS. It uses much
less memory than previous methods, allowing us to examine larger and higher-
dimensional domains. We sample domains of up to six dimensions on a CPU, and
three dimensions on a GPU.

5.2 Depth of Field by Line Darts (DoF)

Optical camera lenses focus at a single distance from the camera, so captured images
typically exhibit blur effects at other distances. Computer-generated images, on the
other hand, by default are in focus at all distances. Simulating the depth-of-field
effects of a real camera is helpful in adding realism to computer graphics. Using
one-dimensional darts or line darts or line samples [13,21], one can produce high-
quality low-noise images with depth-of-field effects. Compared to traditional point
sampling, line darts are able to capture more information per sample. Although each
line dart is computationally more expensive than a point dart, in practice line-darts
reduce the overall run time to produce an image of comparable quality.

Depth of field involves sampling the image in 4-d (x, y,u,v) space, where
(x, y) is screen space and (u, v) is lens space. In k-d darts [13], each dart sample
consists of four orthogonal lines, one spanning each of the 4-d coordinates. In wagon
wheel [21], each dart sample consists of a radial line in («, v) space, passing through
the center of the lens; see Fig. 10. The remainder of this section elaborates on the
wagon wheel approach.

“, >

Point Samples in Line Samples in
the lens domain the lens domain

Fig. 10 Depth of field line sampling vs. point sampling. We have four colored samples in scene
space (middle). For each one, point sampling generates one point in lens space (left), while our
method generates multiple line samples (right)
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Fig. 11 256 point samples (fop) and 16 wagon-wheel line samples (bottom) per pixel produce
nearly the same image, but line samples are about four times faster. (a) Example 800 x 800 pixel
scenes rendered using 256 point samples. (b) Example 800 x 800 pixel scenes rendered using 16
line samples

For each pixel we generate several sampling locations (x,, y,) within the pixel
and then perform line sampling along the lens (u,v) space. Rendering starts by
computing intersections between line darts and incoming primitives that represent
the scene. Primitives that intersect the line samples then generate colored line
segments, whose contribution is aggregated in to the final color of the pixel. How
line samples are placed along the lens plays a crucial role in the final image quality.

A wagon wheel line sampling pattern (Fig. 10) has several advantages when
compared to alternatives. First, it has uniform line sample lengths. This helps when
implementing the algorithm on highly parallel architectures, such as a GPU. Second,
line samples passing through the origin can be expressed in a simple slope-intercept
form v = mu, simplifying the math. Lastly, the bias that is associated with such
a pattern can be easily removed by a reweighting during filtering. An alternative
would be a grid-like pattern, as the ridges of a waffle, using k-d darts in just (u, v)
space.

Figure 11 shows the results of several scenes rendered with 256 point samples
versus 16 wagon wheel line samples, run in parallel on a NVIDIA GTX 580 GPU.
Also, for k-d darts, 16 line-darts produce a better picture, more quickly, than 1024
points. Using either wagon wheels or k-d darts, line sampling demonstrates a clear
win in terms of both quality and performance.

5.3 Volume Estimation by Hyperplane Darts

We study the accuracy of high-dimensional sampling using k-d darts, on the classi-
cal problem of estimating the volume of an object [13]. We seek to experimentally
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quantify the effects of the object orientation, dart orientation, object surface area
to volume ratio, and dimensions of the object and dart. We create a d-dimensional
hyper-ellipsoid object as follows.

— Start with a unit d-ball (d -dimensional unit sphere);
— Scale along the x-axis by a factor squish s to generate an elliptical profile; and
— Perform r random Givens rotations to randomly orient it.

We compute the volume of the ellipsoid analytically, for the ground-truth. For
comparison, we estimate the volume of the ellipsoid using k = 0 darts, i.e.
classical Monte Carlo point sampling: sample random points from the ellipsoid’s
bounding box and count the fraction inside the ellipsoid. The accuracy decreases as
d increases.

For k-d darts, we can choose to throw line darts, plane darts, or darts of any
dimension k < d. Figure 12 show how k-d darts consistently outperform point
darts. Their advantage increases as k increases.

Darts may be axis-aligned or arbitrarily oriented. We recommend axis-aligned
darts for three reasons. First, it is easy to distribute aligned darts uniformly, which
ensures that the expected mean of the function estimates is accurate. Second, it is
easiest to implement aligned darts, since it involves simply fixing coordinate values.
Third, in many cases it is most efficient because we may obtain an expression for the
underlying function along a dart by substituting in the fixed coordinate values. We
compare the accuracy of aligned and unaligned darts in the top row of Fig. 12. For
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Fig. 12 d-Dimensional hyper-ellipsoid volume estimation, for varying squish factor s scaling the
main axis, dart dimension k, and fixed number of random rotations r = 10 of the ellipsoid. Top
uses axis-aligned (la), randomly oriented (1r), and orthogonal pairs of randomly oriented darts
(lo). Bottom uses axis-aligned darts in 10-d. Left shows the ratio of the estimated to true volume
by frequency for a fixed number of samples, 1. Right shows |mean — true|/true volume by the the
number of darts, n
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squished ellipsoids, aligned darts are slightly more accurate, but the prior reasons
are more significant.

6 Summary

We have highlighted the main research results of our sampling group from 2011
to 2013. We consider MPS, or more generally point sets that are both well-spaced
and random, to be a very rich area, crossing many fields and applications. Over the
course of our research, we have explored many modifications to our algorithms and
used the output for many different applications. Uses and features of our sample
generation and modification algorithms are summarized in Tables 1 and 2. We
have compared and contrasted these to the works of others. These variations [6, 9],
and their tradeoffs, led us to the conceptual framework for sampling illustrated in
Fig. 13.

Table 1 Our sample generation and modification algorithms’ application context

Name Goals Mesh | Nodes Beta Dim

Opt-beta Reduce beta Ok Move Tune <1 |2

Steiner reduction Fewer points, preserve mesh Yes (Re)ymove | >1 2
angles

Sifted disks Fewer points, preserving Ok (Re)ymove |1 2
beta = 1

k-d darts Create points, integration, in Create —>1 2-23
high dimensions

Variable radii MPS | Create points with sizing Yes Create Tune>1 |2
function or spacing

VorMesh MPS Create Voronoi polyhedral Yes Create 1-2 2-3
mesh

DelMesh MPS Create Delaunay triangle mesh | Yes Create 1-2 2-3

Simple MPS Create points in moderate Ok Create 1 2-6
dimensions

Efficient MPS Create points in two dimensions | Ok Create 1 2
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Table 2 Our algorithms’ performance and features

Name GPU Time Memory Features Ref.

Opt-beta Numeric n Local position optimization, [6]
as smoothing

Steiner reduction ~n 2-to-1 node replacement [1]

Sifted disks n 2-to-1 node replacement [9]

k-d darts n2d? nd High-d, global hyperplanes, [13]
many applications

Variable radii MPS ~n Provable qualities [16]

VorMesh MPS ~n Bounded domains, provable [8]
quality

DelMesh MPS GPU ~n n Bounded domains, provable [10]
quality

Simple MPS GPU ~ n24 n2¢ Efficient flat quadtree [11]
tracking voids

Efficient MPS GPU nlogn n Provable runtime, polygon [12]
approx. voids

Many [8, 10, 16] use a form of Simple MPS [11]

Process randomness is a hidden axis,
merely a means to obtain spatial randomness.

Spatial

Randomness Biue Noise

MPS

uniform-random coordinates {
jittering

injecny

optimization
CcVvT

Discrete Density
n number of samples
kissing number

number of neighbors, edges, cells,

\

Fourier Spectrum, Power and Anisotropy
Pairwise Distances, Edge Orientations
Dimension d
sifting
off-centers
bubble mes
oin and sample optimization

r, free radius, nearest-neighbor distance; Delaunay edge lengths

7. coverage radius, Vornoi vertex distance

B =r,/r, Distribution Aspect Ratio; DT angles,Vor cell aspect ratio

Lipschitz Conditions

Unique Coverage

Fig. 13 A conceptual space parameterizing the output of any sampling method. Note methods
such as jittering add randomness, while optimization methods tend to remove randomness. Each
axis may be varied, but the axes are not independent. For example, two-radii MPS places points
further apart, and hence produces fewer of them, and their positions are more random. Achieving
maximality tends to add regularity and improve mesh quality. Bubble mesh interleaves changing
the position and number of points; again optimizing positions leads to greater regularity
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