
 Procedia Engineering 82 (2014) 364 – 376

1877-7058 © 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of organizing committee of the 23rd International Meshing Roundtable (IMR23)
doi: 10.1016/j.proeng.2014.10.397

ScienceDirect
Available online at www.sciencedirect.com

23rd International Meshing Roundtable (IMR23)

Delaunay quadrangulation by two-coloring vertices

Scott A. Mitchella,∗, Mohammed A. Mohammedb, Ahmed H. Mahmoudb, Mohamed S.
Ebeidaa

aSandia National Laboratories, P.O. Box 5800 MS 1320, Albuquerque 87185, U.S.A.

bAlexandria University, El-Guish Road, El-Shatby, Alexandria 21526, Egypt

Abstract

We introduce a bichromatic Delaunay quadrangulation principle by assigning the vertices of a Delaunay triangulation one of two

colors, then discarding edges between vertices of the same color. We present algorithms for generating quadrangulations using

this principle and simple refinements. The global vertex coloring ensures that only local refinements are needed to get all quads.

This is in contrast to triangle-pairing algorithms, which get stuck with isolated triangles that require global refinement. We present

two new sphere-packing algorithms for generating the colored triangulation, and we may also take as input a Delaunay refinement

mesh and color it arbitrarily. These mesh non-convex planar domains with provable quality: quad angles in [10◦, 174◦] and edges

in [0.1, 2]r. The algorithms extend to curved surfaces and graded meshes. The “random” algorithm generates points with blue

noise. The “advancing-front” algorithm produces large patches of boundary-aligned square tilings.

c© 2014 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of organizing committee of the 23rd International Meshing Roundtable (IMR23).

Keywords: Delaunay; quadrangulation; graph coloring; disk packing; blue noise; random; advancing front

Fig. 1: Delaunay quadrangulation (top) from two-color disks (bottom light and dark circles). Left: random. Right: advancing front.

∗Corresponding author. Tel.: +1-505-845-7594.

E-mail address: samitch@sandia.gov

© 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of organizing committee of the 23rd International Meshing Roundtable (IMR23)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2014.10.397&domain=pdf

365 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

1. Introduction

This paper describes a novel quad meshing criterion and algorithm based on combining three well-established ideas

from different communities: advancing front, sphere packing, and graph coloring. In this introduction we outline the

algorithm for experts and practitioners, then briefly review these three key ideas. It is not feasible to fully review each

idea and some of the algorithms we use as subroutines such as disk packing; knowledge of these may be obtained by

reading the selected references. Further, the mesh-quality proofs span about 10 pages, and these proceedings do not

admit appendices, so the proofs are available separately online as a Sandia tech report [1].

1.1. Algorithm summary

We generate a well-spaced point set with a good-quality Delaunay triangulation using one of our new disk-packing

algorithms, or by traditional Delaunay refinement. All points are assigned one of two colors; dark and light in each

region of Fig. 1. Our new algorithms surround each point by two disks, a large one that prevents same-colored points,

and a small one that prevents opposite-colored points. Our first algorithm variant, “random,” places points and colors

randomly. The second algorithm, “advancing front,” places points and colors in structured layers, then fills gaps with

the random algorithm. Their outputs are contrasted in Fig. 1.

We form the Delaunay triangulation of the points, discard monochromatic edges, then perform local refinement to

generate all-quads, as follows. We retain Delaunay edges connecting opposite-colored points, and discard those

between same-colored points. The retained Delaunay edges produce even-sided polygons. Any polygon with six (or

more) sides contains one (or more) discarded monochromatic Delaunay triangles. By switching colors, the fraction of

monochromatic triangles is reduced to about 2%. We add each monochromatic triangle incenter (not circumcenter)

as an opposite-colored point and deterministically connect it to its triangle’s vertices; this is guaranteed to convert

many-sided polygons into quads. Quads with large angles are refined by a local one-to-five template.

1.2. Idea one, advancing front quad meshing

There has been an increasing demand to generate quadrilateral meshes for computational simulations and graphics [2].

In contrast to triangular mesh generation, most of the quadrilateral meshing algorithms are heuristic and may result in

a mesh with poor quality. The triangle meshing literature is dominated by algorithms based on Delaunay triangulation,

advancing front, and grid-based methods. Provably good triangular mesh generation methods are well developed for

planar and curved surfaces. However, quadrilateral elements are sometimes preferred in finite element applications

due to their superior performance.

Unstructured quadrilateral meshes are typically generated by one of two approaches: direct or indirect [3]. An indirect

algorithm starts with a triangular or quad-dominant mesh and then converts all the triangles into quads [4–6]. A direct

approach produces quads without any intermediate form of triangulation. The main direct approaches are domain

decomposition, grid-based, and advancing front.

Advancing front techniques start with placing nodes on the domain boundaries. These represent the “initial front.”

Quadrilateral elements are then formed by projecting each edge on the front towards the interior. A new front is formed

using the edges on the new boundary of the quadrilateral mesh. This process is repeated recursively until the domain is

completely covered with quadrilaterals. Zhu [7] is among the first to propose a quadrilateral advancing front algorithm.

In his approach, two triangles are created using the traditional advancing front methods then combined to form a

single quadrilateral. Blacker and Stephenson [8] introduced the Paving algorithm in which they place a complete row

of quads between two sharp angles. White and Kinney [9] enhanced the robustness of the paving algorithm through

creating individual quadrilaterals rather than a complete row. These methods generate near-boundary elements with

high quality. However, it is difficult to robustly close the gap between colliding fronts with high quality elements,

especially if two overlapping elements have a large difference in size. These cases are resolved by heuristics that

sometimes result in elements with poor quality. Moreover, the detection and resolution of the closure regions can be

366 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

very time consuming and sensitive to floating point errors. Bern and Eppstein [10] used an advancing-front circle

packing to subdivide the domain directly into quadrilaterals with angles less than or equal to 120◦, but with no

guarantees on edge lengths or the smallest angle. It is advancing front in the sense that new disks are placed tangent

to prior disks.

1.3. Idea two, random disk packings

Disk packing methods fill a domain with disks that are forbidden to overlap in some way. The packing is maximal
when there is no room to add another disk without creating a forbidden conflict. The maximality ensures that no

domain point is farther from a sample than the disk radius, else we could insert a disk center there. In a maximal

packing where the disk radius is constant, or varies slowly, the points are well-spaced. This means that there is a max-

imum bound on the domain-point to nearest disk-center distance, a minimum bound on the distance between nearby

disk-centers, and a maximum bound on the ratio of the two; further these all hold locally. Well-spaced points have

Delaunay triangulations with good angles [11–13]. Traditional Delaunay refinement algorithms [12] flip the cause

and effect, using the angles of an intermediate Delaunay triangulation to guide the generation of a well-spaced point

set. Maximal Poisson-disk Sampling (MPS) is defined in terms of a process that sequentially creates disks and keeps

a disk only if it is outside the prior disks. In the definition, the center of each disk is chosen uniformly at random, but

many algorithms change the placement process slightly for efficiency. The important thing for graphics applications

is that the final distribution of disk centers exhibits “blue noise,” which is loosely used to mean a distribution whose

Fourier spectrum has little low frequency content; see Section 4.

There are many algorithms for maximal and near-maximal Poisson-disk samplings from graphics [14–16]. Multi-class

blue noise sampling [17] produces random samplings of multiple categories of disks interspersed. Each category is

well-spaced by itself, and the combined set is also well-spaced. Each point has disks of multiple radii surrounding it,

one for each category, for spacing the different categories different amounts apart. This paper is a special case where

we have only two categories of points, and each has the same two radii. Our random placement algorithm is similar

to multi-class sampling. Mitchell et al. [18] introduced a single category of disks with two radii; the effect of the radii

ratio α on the point spacing and triangle quality is about the same as in our setting with two categories.

Simple MPS [16] is perhaps the simplest and fastest MPS algorithm. It uses a quadtree where all active leaves have the

same level to avoid bookkeeping. One nice thing about this approach is that it is fairly agnostic about the primitives

used for deciding whether to discard a quad tree square, refine it, or accept a sample point in it. This paper uses the

Simple MPS framework, with modified disk conflict and cell discard checks for the two categories and radii.

1.4. Idea three, two-coloring vertices for transforming triangles to quads

The famous “two-color theorem” shows that the edges of any quadrangulation are a bichromatic graph [19]. That is,

it is possible to color the vertices with two colors, such that no edge connects two vertices of the same color.1 This

inspires our use of two colors (categories) of disks. A Delaunay triangulation connects two vertices if there is a circle

through them that contains no other vertex; such vertices are nearby compared to the other vertices in about the same

direction. Our two radii encourage disks of different colors to be close enough to one another to be connected by

a Delaunay edge, and same-colored disks to be far apart and unconnected. Further, we enforce this by discarding

same-colored Delaunay edges. To our knowledge, we are the first to define this bichromatic Delaunay criteria. 2

1Quadrangulations are two-colorable for topologically “planar” surfaces, including meshes on geometrically curved surfaces that can be

deformed into the plane, such as a sphere mesh by picking one quadrilateral to contain the point at infinity. For surfaces with topological handles,

such as a torus, some quadrangulations are bichromatic, some not, depending on the existence of edge cycles with odd length. Having a quad mesh

that is the boundary of a hex mesh does not settle the ambiguity, as it may have odd edge cycles that are null-homotopic in the complement of the

hex mesh, e.g. for a torus, cycles must be even around the minor circumference but may be odd around the major circumference [20].
2A different use of the Delaunay criteria for finding quadrangulations is to lift points to three-dimensions, form a Delaunay tetrahedralization,

then project back to the plane and make connectivity decisions based on the edge crossings [6].

367 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

One family of quad algorithms takes a triangulation and pairs triangles together to form quads [2,21]. Global matching

algorithms tend to be expensive, e.g. quadratic. A bigger challenge is that there are often isolated unmatched triangles.

These arise either geometrically or topologically: pairing would create a bad-quality quad, or a perfect matching over

the whole mesh is impossible because of the graph topology. One way to resolve isolated triangles is to refine them

into (e.g. three) quads, but this necessitates refining at least one adjacent quad, and its opposite-side neighbor, in

a cascading chain that terminates at another unmatched triangle or the boundary [22]. That is, it requires global

refinement to get all quads. This is in sharp contrast to our method with colored vertices, where refinement into

all-quads can always be done locally without propagation. Triangle pairing is a local operation that leaves global

difficulties, and two-coloring is a global operation that leaves only local difficulties.

2. Colored disk generation algorithms

We now describe our two new algorithms for generating disks: random, using Poisson-disk sampling; and advancing-

front (or “biased”) as in paving. We explain the basic steps here and Section 3.2 explores some heuristic modifications.

In both algorithms we try to reach a maximal packing. Both algorithms are based on two colors of disks, which we

will call red and blue. Each disk has two radii, and their ratio is a key algorithm parameter affecting the output quality,

which we describe first.

2.1. Radii ratio α

Each disk is associated with two radii: rs (small) and rb (big). Disk centers of different colors are at least rs apart,

and same-colored disk centers are at least rb apart. The parameter α = rb/rs controls the intermingling between the

colors. We keep α ∈ [1, 3] and, empirically, α ≈ 2.5 works best. A value of 1 makes both radii the same. Non-colored,

single-radius (α = 1) maximal packings from other sources, such as Delaunay refinement, can be converted into a

two-coloring by any coloring of the vertices.

2.2. Random Poisson-disk sampling algorithm

The random algorithm is based on the framework of Simple MPS [16], with modified primitives for our two-radii and

bichromatic disks; see Fig. 2. We start with constructing a base grid of square cells. Each cell can contain at most one

sample: cell diagonals are rs. These cells are the initial pool of active cells.

We pick a random cell, then a random point inside the cell, and give it a random color. We gather the nearby extant

samples using the base grid, and check for conflict using rs, rb, and the colors of the disks. If a sample is in conflict,

it is rejected. Otherwise, we accept the sample and remove its cell from the active pool. After a number of attempts

proportional to the beginning size of the active pool [16], we proceed to the next iteration.

To advance the iteration, we refine all active cells, and discard child cells that are too close to extant samples to admit

a point. In particular, we discard a cell if it is inside an rs-radius disk, or if it is inside an rb disk of each color. This

test is conservative, in that we never discard a cell that could admit a point. However, we often retain a square that has

no conflict-free area; this is handled later when we refine it and discover we can discard its children. The maximum

refinement depth is machine precision, and in practice the number of active squares decreases geometrically (quickly)

with iteration count (equal to refinement depth).

2.3. Advancing front algorithm

We place disks on the domain boundary. We then advance the front using vertical advancement, perpendicular to the

front or domain boundary, until it can be advanced no further; then horizontal advancement, parallel to the boundary,

368 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

(a) Iteration 0 End (b) Iteration 1 Start (c) Iteration 1 End (d) Iteration 2 Start

(e) Iteration 2 End (f) Iteration 3 Start (g) Iteration 3 End (h) Final

Fig. 2: The random algorithm in action. Within an iteration, we repeatedly pick an active cell (gray), pick a point in that cell and color it, and

accept it if it isn’t conflicting. Between iterations, all active cells are refined, and the covered children are discarded. The algorithm terminates with

a maximal sampling when no active cells remain. Here rs = 0.095 and α = 2.5 and the domain is a periodic unit square.

to exhaustion. We repeat these two types of advancement until neither makes progress. We fill any remaining small

gaps using the random algorithm. We now describe these steps and boundary sampling in more detail.

2.3.1. Boundary sampling

If the domain has no boundary because it is periodic or closed, then place two same-colored (blue) disks with centers√
2rb apart. Otherwise, cover the boundary with disks; see Fig.s 3 and 4a. Place blue disks at all domain vertices.

Place blue disks on the curves at least 2rs apart; the ideal spacing is
√

2rb. This is not possible for all curve lengths,

so get as close as possible, rounding up or down. Now place red disks half-way between the blue disks.

(a) Sharp corner with conflict-

ing boundary disks.

(b) Flat boundary angles. (c) Opposite-color disks be-

tween conflicting disks.

(d) No flat boundary angles re-

main.

Fig. 3: Extra disks near sharp corners and narrow regions remove flat angles.

If the input has small angles, or narrow regions (compared to the disk radii), the boundary disks may conflict. Extra

disks, also in conflict, are introduced to avoid flat boundary angles; see Fig. 3. Conflicts and poor quality only occur

locally. Interior large angles are fixed after the packing is maximal, in Section 3. For the random algorithm, boundary

sampling and handling sharp features are similar, except the spacing is random and more varied.

369 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

(a) Boundary sampling (b) Blue vertical front points (c) Red vertical front points

(d) One level of vertical ad-

vancement

(e) Adjacent pyramids from

vertical advancement

(f) Disks after first horizontal

advancement

Fig. 4: One vertical and horizontal advancement iteration from a two-sided boundary.

(a) Boundary sampling (b) Vertical Advancement (c) Horizontal Advance

(d) Vertical Advancement (e) Horizontal Advance (f) Final random packing

Fig. 5: Typical configurations after the different advancing front phases.

2.3.2. Vertical advancement

We find two overlapping big disks of the same color and at the same level. The disks on the boundary are all level

zero. The level is the number of advancement steps preceding its generation. We seek to add another disk at their

intersection points, at the next level and of the same color; see Fig. 4b. (Disks have two intersection points; each

may be outside the domain or covered by disks from a lower level or another patch.) The intersection points define

the “front” of the advancing front. We check the candidate at the intersection point for the standard conflict criteria

defined by its two disk radii, and reject it if necessary. It is also rejected if it contains a second intersection point in its

big disk.

Fig. 5b illustrates the output after vertical advancement can make no more progress. Starting with a row of disks on

a single curve, the next row at the next level tends to have one fewer disk. This tends to result in pyramid-shaped

arrangements as in Fig. 4e. Each row is advanced until it peters out to a single disk, or collides with a pyramid growing

from some other curve, as in Fig. 5b. The order in which the front is advanced will determine the rate at which the

patch for each curve grows. The algorithm is relatively insensitive to advancement order. Deterministically visiting all

the intersection points at a given level for one color, then all the ones at the same level for the other color, works well.

We continue advancing the front until all patches cannot grow. Depending on the angle between curves, there is often

370 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

a large uncovered area between adjacent patches. Fractured pyramids and gaps also occur due to surface curvature

when meshing curved surfaces.

2.3.3. Horizontal advancement

See Fig. 4f and Fig. 5c. The disks on the end of each row are called terminal disks. Except for a single-disk pyramid

apex, they have exactly one opposite-colored neighbor. For a blue terminal disk with a red neighbor, we attempt to

add another red disk opposite the neighbor. The neighbor is at center distance d ≈ √2rb/2 from the terminal disk.

The candidate is also at distance d from the terminal disk, and centered on the line through the terminal and neighbor

centers. If the candidate is in conflict, we stop. We advance the terminal disks (the front) horizontally, in deterministic

round-robin order, until all candidates are in conflict.

2.3.4. Filling large gaps

After neither advancement is possible, if there is still a large area uncovered, we pick one of the disks bounding it,

and find a direction into it, in which we can add a same-colored disk at distance
√

2rb. Also add an overlapping pair

of opposite-colored disks. These seeds start a new structured patch, which is then advanced as before. After filling all

large gaps, we fill any small gaps using the random algorithm.

3. Getting all-quads with good shape

We start with a maximal two-color disk packing. This may have been generated by the random algorithm, the

advancing-front algorithm, or some other source such as Delaunay refinement. We construct its Delaunay trian-

gulation with no special constraints. Then we reduce the connectivity by discarding edges connecting two vertices

of the same color. Right away, this produces mostly quadrilaterals. The other many-sided cells contain a discarded

monochromatic triangle, because of the two-coloring.

So, our problematic structures are monochromatic triangles, and non-convex quadrilaterals. We have a deterministic

template-based technique that refines the monochromatic triangles, then the non-convex quads. This gives guaranteed

quad quality and termination. With α = 1, the provable guarantees are that all quad angles are in [10.8◦, 173.3◦] and

edges are in [0.1, 2]rs. We emphasize that these resolution steps are local, and only affect adjacent triangles. This is

in sharp contrast to the triangle pairing family of algorithms, where an unmatched triangle leads to a refinement that

propagates throughout the entire domain until the boundary or another unmatched triangle is reached. We also have

several optional heuristic strategies that improve quality in practice but degrade the theory guarantees; see Section 3.2.

3.1. Guaranteed-quality quads by templates

There are several useful properties because of the two-coloring:

• Triangles have either one or three edges discarded.

• Many-sided cells have an even number of boundary edges.

• Many-sided cells contain a monochromatic triangle, with three discarded edges.

The last property follows from the prior properties, and because any triangulation of a five-or-more sided polygon

contains at triangle with at least two internal edges.

Incircle refinement removes monochromatic triangles by adding the incenter—not the circumcenter as in Delaunay

refinement—with the opposite color, and deterministically connects it to the three triangle vertices. See Fig. 6a. This

produces all quads. If all of the vertices in the mesh are of one color, then this is the same as Q-TRAN refinement [5].

Median refinement removes large angles (> 173◦) of quads by a 1-to-5 quad template; see Fig. 6b. Each of the two

371 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

(a) A many-sided region becomes quads

by incircle-refinement.

1/5

median
offset median

(b) A reflex quad becomes five convex

quads by median template refinement.

α �γ �e

1 min 10.8◦ 0.1rs
max 173.3◦ 2rs

2 min 7.7◦ 0.2rs
max 173.6◦ 4rs

(c) Provable quality bounds with no heuristics,

final quad angles (�γ) and edge lengths (�e).

Fig. 6: Refining monochromatic triangles and reflex quads into convex quads with shape and size guarantees. In 6a, the green many-sided polygon

is divided into quads with two green and two red edges. Adjacent monochromatic triangles would form a quad with four red edges. Original

monochromatic edges are dashed black, original bichromatic edges are green, introduced bichromatic edges are red or solid black (except in 6b the

starting triangles might have come from incircle refinement).

triangles of the quad are refined in the same way, then glued together along the common quad diagonal. The lines of

the refinement are parallel to the median lines, but two are offset 1/5 of the way along the quad diagonal.

We have provable bounds on the angles and edge lengths in the triangulation and subsequent quadrangulations. These

are summarized in the table in Fig. 6c, and their lengthy derivations are in the extended version of this paper, available

online as a Sandia tech report [1]. We provide some intuition about why they hold here. The initial triangles from

the packing are well-shaped by the standard reasons for (two-radii) maximal Poisson-disk packing [18] and Delaunay

refinement [12] algorithms. Incircle refinement halves some triangle angles, but these angles are always combined

with another one in a quad. It places three moderately large angles in the center of a triangle, up to 150◦. The refined

edges can be as small as about half of an original edge. Median refinement can cut some of the triangle angles by

about a third. Because the original triangulation had no extremely large angles (at most 120◦ in the α = 1 case), the

quad reflex angles are not too large, and median refinement will always produce convex quads. The median template

can introduce some large angles where the offset medians intersect the quad diagonal. In the worst case they are only

about 6◦ away from being 180◦. It can also introduce some fairly short edges. While these bounds are not great, they

do provide a reasonable starting point for smoothing or other mesh improvement techniques.

3.2. Heuristic improvements

For boundary sampling, we get better mesh quality if we allow the color of disks at domain vertices to be red or blue,

in order to get the spacing closer to the ideal
√

2rb. (We still require alternating disk colors along each domain curve.)

Also, curves with vertices of different colors can be advanced farther, so the structured patches are bigger.

We have two heuristics for reducing the frequency of problematic cells, and two for resolving them. For frequency

reduction, we increase the parameter α. This is inspired by the diagonal of a square (monochromatic edge) being

longer than its side (bichromatic edge). A value of
√

2 is a square diagonal and coincides with the value used in

multi-class sampling [17], so it is the first value we tried. Larger values worked better, because they generated fewer

monochromatic triangles; see the red and blue lines of Fig. 7a. Any α > 1 actually degrades the theoretical quality

guarantees; but in practice it helps, and we discovered that α = 2.5 works best. A second, very effective strategy is to

switch colors to reduce the number of monochromatic triangles, down to 2%; see the purple and green lines of Fig. 7a.

A nice feature is that color switching does not change the point positions. However, if α > 1, it reduces the theoretical

quality guarantees farther. One heuristic that did not help was keeping the number of red and blue disks continuously

balanced by assigning the initial color to be the underfilled color.

A heuristic to resolve a monochromatic triangle is Delaunay refinement with the opposite color, followed by Delaunay

retriangulation; see Fig. 7b. This heuristic has some small chance of creating a new, smaller monochromatic triangle,

requiring further refinement. If it terminates, it has the nice property that all edges are Delaunay. A strategy to resolve

372 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

(a) Monochromatic triangle frequency. The number of ini-

tial monochromatic triangles decreases with α. Switch post-

processing switches disk colors, and reduces the number of

monochromatic triangles to about 2%.

(b) Delaunay circumcenter refinement with retriangulation usually termi-

nates quickly and produces good quads, but not always.

Fig. 7: Some heuristics for removing monochromatic triangles.

(a) Angles distribution (b) Edge length distribution (c) Aspect ratio distribution

Fig. 8: Quad quality before refining non-convex quads, as α varies.

(a) Quad angles (b) Edge length (c) Aspect ratio

before after

(d) Edge valence

Fig. 9: Quad quality for our random algorithm on a periodic unit square, about one million points, and α = 2.5; before (blue) and after (red)

heuristic improvements. Resampling yields a maximum angle of 170◦.

non-convex quads is resampling: remove the points in a neighborhood of the large angle, then fill it in with a different

random packing. This works well down to angles of about 170◦. Fig. 9 shows the typical quality after these heuristics.

Of course, standard smoothing and edge flipping can also be performed on the quad mesh. None of our examples do

that, in order to illustrate that our new techniques already produce a fairly good mesh. The best ways to improve quad

quality, and retain provable angle bounds, remain topics for further investigation.

373 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

4. Results

Unit square with periodic boundary conditions. We generated random quad meshes of a periodic square. Fig. 9

shows the quad quality and Fig. 10a shows the disks and mesh. Fig. 11 shows that our output has blue noise, and

studies the effect of varying α on the spectra.

(a) Random periodic unit square with rs = 0.02 and α = 2.5.

(b) Varying sizing function on Fertility, 5k points, α = 2.5.

Fig. 10: Delaunay quadrangulations of periodic or curved domains.

Non-convex domain with uniform sizing function. In Fig. 12 we compare our advancing front algorithm with

the paving algorithm from Cubit. Cubit’s output is superior in some respects, but this illustrates that our quality is

reasonable enough that a production capability could be built on it. See Fig. 13 for more planar examples.

Curved surface with uniform sizing function. Our algorithms extend to curved surfaces. For the random algorithm,

instead of a background grid of squares, we start with a (graphics) triangulation of the curved surface. These triangles

are the initial active pool. To generate the candidate sample, a triangle is chosen uniformly by area, then we generate

a uniform-random point inside it. Some large triangles might be able to contain more than one sample, so we must

check before discarding it. We use the Euclidean distance for simplicity, which is an approximation. When advancing

the iteration and refining the active cells, we split each triangular cell into four triangles. We also have an advancing

front variation for curved surfaces. The results of the random algorithm are shown in Fig. 14, and the advancing-front

algorithm in Fig. 15.

Curved surface with varying sizing function. Our random algorithm can use a spatially-varying sizing function

over a curved surface. We require that we can obtain the sizing function value for any random point on the surface, for

example by interpolation in its containing triangle. As before, we pick a random triangle and chose a random point

from it. We define rb to be the sizing function value at the point, and rs = rb/α. These are used to define conflict

between same-colored and opposite-colored points as before. Since the sizing function varies the radius for the point

and a neighboring point may be different; we define disk conflict by the Smaller Disks criterion [18]. That is, the

disks are in conflict if the center of the larger disk lies inside the smaller disk. When checking if refined child cells

are covered the only change is that the rb and rs of each nearby sample is different. The mesh for the Fertility model

is shown in Fig. 10b.

5. Conclusions

We have introduced a novel concept, a bichromatic Delaunay quadrangulation, based on assigning points one of two

colors, and only retaining the Delaunay edges between opposite-colored points. In spatially-isolated cases, constrained

incircle refinement is needed to produce all quads, without any six-or-more sided cells. Template refinement or re-

sampling is needed in spatially-isolated cases to remove large angles. For the best quality, we define two radii around

each point, so that same-colored points must be farther apart than opposite-colored points. We have demonstrated

374 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

(a) α = 1.5 (b) α = 1.5

(c) α = 2.5 (d) α = 2.5

Fig. 11: Spectral analysis using PSA [23], a standard tool of the graphics community. Left column, (a) (c), before refining monochromatic triangles;

right column, (b) (d), after. Top row is α = 1.5 and bottom row is α = 2.5. In each quad-chart, upper left is the points, and upper right is the Fourier

transform of all point-to-point distance vectors. Lower left shows the 1-d histogram of the magnitude of these distances, scaled by area so uniform-

random points would generate a horizontal line; for MPS, this resembles a step function with an 3× tall spike at the beginning of the step. Lower

right is the Fourier transform of the 1-d histogram; for MPS, this is close to the sinc function.

(a) Our mesh (b) Cubit paving mesh (c) Quad angles (d) Quad aspect ratio

Fig. 12: Advancing front vs. Cubit’s paver. Our lack of smoothing and quad cleanup shows in the jaggedness of (c) and (d). We create larger

structured patches.

375 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

Fig. 13: Advancing-front Delaunay quadrangulation of non-convex planar surfaces.

Fig. 14: Random Delaunay quadrangulations of curved surfaces: Bunny (10k points), Moai (10k points), Bimba (20k points).

Fig. 15: Delaunay Quadrangulation of curved surfaces using advancing front: Bunny (10k points), Fertility (20k points), Bimba (20k points).

both a random algorithm that produces good spectral properties, and an advancing front algorithm that produces a

structured mesh over large patches. We can also quadrangulate the points of well-spaced sphere-packings from other

algorithms, such as a triangulation produced by classical Delaunay refinement.

We have demonstrated these algorithms on a variety of models, and studied the effects of tuning the ratio of the two

radii. We have an initial demonstration of variable sizing functions on curved surfaces; we would like to understand

the limits of how fast the sizing function can vary and still get good quality and robustness. We would like a size-

varying version of our advancing front algorithm. In some applications it may be desirable to control the extent of the

376 Scott A. Mitchell et al. / Procedia Engineering 82 (2014) 364 – 376

structured patches and irregular vertices, switching between the structured and random algorithms in a more nuanced

way.

While our output has provable quality, the bounds are not that good. We would like to discover ways to achieve

better quality in theory and practice. This may involve some combination of different point placement algorithms, and

different monochromatic triangle and large-angled quad resolution algorithms, as well as standard quad smoothing

and cleanup.

Acknowledgements

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned sub-

sidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under

contract DE-AC04-94AL85000.

References

[1] S. A. Mitchell, M. A. Mohammed, A. H. Mahmoud, M. S. Ebeida, Delaunay quadrangulation by two-coloring vertices — extended version

with quad-quality proofs appendix, Technical Report, Sandia National Laboratories, 2014. Available at http://www.cs.sandia.gov/

˜samitch/bibliography_2007.html.

[2] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, D. Zorin, Quad-mesh generation and processing: A survey, Computer

Graphics Forum 32 (2013) 51–76.

[3] S. Owen, A survey of unstructured mesh generation technology, in: International Meshing Roundtable, volume 7, Sandia National Laboratories,

1998, pp. 26–28.

[4] T. Itoh, K. Shimada, Automatic conversion of triangular meshes into quadrilateral meshes with directionality, Int. J. CAD/CAM 1 (2002)

11–21.

[5] M. S. Ebeida, K. Karamete, E. Mestreau, S. Dey, Q-TRAN: a new approach to transform triangular meshes into quadrilateral meshes locally,

in: International Meshing Roundtable, volume 19, Sandia National Laboratories, 2010, pp. 23–34.

[6] T. Schiffer, F. Aurenhammer, M. Demuth, Computing convex quadrangulations, Discrete Appl. Math. 160 (2012) 648–656.

[7] J. Z. Zhu, O. C. Zienkiewicz, E. Hinton, J. Wu, A new approach to the development of automatic quadrilateral mesh generation , Int. J. Numer.

Meth. Eng. 32 (1991) 849–866.

[8] T. D. Blacker, M. B. Stephenson, Paving: A new approach to automated quadrilateral mesh generation, Int. J. Numer. Meth. Eng. 32 (1991)

811–847.

[9] D. R. White, P. Kinney, Redesign of the paving algorithm: Robustness enhancements through element by element meshing, in: International

Meshing Roundtable, volume 6, Sandia National Laboratories, 1997, pp. 323–335.

[10] M. Bern, D. Eppstein, Quadrilateral meshing by circle packing, Int. J. Comp. Geom. & Appl. 10 (2000) 347–360.

[11] D. Talmor, Well-spaced points for numerical methods, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, 1997. CMU CS Tech Report

CMU-CS-97-164.

[12] L. P. Chew, Guaranteed-quality triangular meshes, Technical Report 89-983, Department of Computer Science, Cornell University, 1989.

[13] M. S. Ebeida, S. A. Mitchell, A. A. Davidson, A. Patney, P. M. Knupp, J. D. Owens, Efficient and good Delaunay meshes from random points,

Computer-Aided Design 43 (2011) 1506–1515.

[14] M. S. Ebeida, A. Patney, S. A. Mitchell, A. Davidson, P. M. Knupp, J. D. Owens, Efficient maximal Poisson-disk sampling, ACM Transactions

on Graphics 30 (2011).

[15] M. N. Gamito, S. C. Maddock, Accurate multidimensional Poisson-disk sampling, ACM Transactions on Graphics (TOG) 29 (2009) 8.

[16] M. S. Ebeida, S. A. Mitchell, A. Patney, A. A. Davidson, J. D. Owens, A simple algorithm for maximal Poisson-disk sampling in high

dimensions, Computer Graphics Forum 31 (2012) 785–794.

[17] L.-Y. Wei, Multi-class blue noise sampling, ACM Trans. Graph. 29 (2010) 79:1–79:8.

[18] S. A. Mitchell, A. Rand, M. S. Ebeida, C. Bajaj, Variable radii Poisson-disk sampling, in: Canadian Conference on Computational Geometry,

volume 24, 2012, pp. 185–190.

[19] A. Soifer, The Mathematical Coloring Book, Springer–Verlag, 2008.

[20] S. A. Mitchell, A characterization of the quadrilateral meshes of a surface which admit a compatible hexahedral mesh of the enclosed volume,

in: STACS 96, Springer Berlin Heidelberg, 1996, pp. 465–476.

[21] J.-F. Remacle, J. Lambrechts, B. Seny, E. Marchandise, A. Johnen, C. Geuzainet, Blossom-quad: A non-uniform quadrilateral mesh generator

using a minimum-cost perfect-matching algorithm, International Journal for Numerical Methods in Engineering 89 (2012) 1102–1119.

[22] L. Velho, D. Zorin, 4-8 subdivision, Comput. Aided Geom. Des. 18 (2001) 397–427. Special issue on Subdivision Algorithms.

[23] T. Schlömer, PSA point set analysis, http://code.google.com/p/psa/, 2011.

