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a b s t r a c t

We present an all-quad meshing algorithm for general domains. We start with a strongly balanced
quadtree. In contrast to snapping the quadtree corners onto the geometric domain boundaries, we move
them away from the geometry. Then we intersect the moved grid with the geometry. The resulting
polygons are converted into quads with midpoint subdivision. Moving away avoids creating any flat
angles, either at a quadtree corner or at a geometry–quadtree intersection. We are able to handle two-
sided domains, and more complex topologies than prior methods. The algorithm is provably correct and
robust in practice. It is cleanup-free, meaning we have angle and edge length bounds without the use of
any pillowing, swapping, or smoothing. Thus, our simple algorithm is fast and predictable. This paper has
better quality bounds, and the algorithm is demonstrated over more complex domains, than our prior
version.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Generating good quality meshes is a challenging problem
with many engineering applications: e.g., Finite Element Analysis
(FEA) [1–3] and Computer-Aided Design (CAD) [4,5]. The quality
of the mesh plays a significant role in the accuracy and stability
of the numerical computation. It is difficult to determine if a
mesh possesses even the minimal quality necessary to undertake
a computational analysis without concrete metrics. Since the
necessary criteria are often application specific, the community has
gravitated toward quality metrics based on geometric criteria that
are usually sufficient. For example, angle minimum andmaximum
bounds are commonly used, along with element size, aspect ratio,
skew, stretching, and orientation.

Many algorithms for triangular meshing are robust and provide
guaranteed quality, and are readily available. In that sense
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triangular meshing is well-developed, but quad meshing is not.
Prior quad methods often have difficulty in achieving angles in
[45°, 135°]. Indeed, sharp features of the input domain may make
this impossible. However, evenwithout sharp input features,many
prior methods create flat elements that require post-processing to
achieve good angles. Another shortcoming is that many methods
only work on restricted classes of input domains, such as meshing
only one side of a geometric boundary, or vertices must have
four or fewer curves. Ideally, one would like a provably good
algorithm (i.e., with quality bounds) guaranteed to work on
arbitrary topology, including point sets, two-sided domains, and
embedded curves.

1.1. Related work

Unstructured all-quad meshing algorithms are usually catego-
rized into two main categories: indirect and direct. A classical indi-
rect approach starts with a triangular mesh, and then transforms
the triangular elements into quadrilateral elements, via optimiza-
tion [6,7], refinement and coarsening [8], or simplification [9]. A
class of indirect methods start with a triangular mesh and applies
the mid-point subdivision rule [10,11] to split a triangle into three
quad elements. This can be generalized to other local subdivision
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(a) Dual contouring. (b) Our algorithm.

Fig. 1. Starting with a uniform grid (black): comparing mesh element quality
of our algorithm to that of dual contouring when an element is intersected by a
domain boundary (red). Dual contouring generates a dual quad element whose
vertices are preferably on the boundary (red) or the center of a non-intersected
element (yellow), which often results in an undesired flat angle degrading the
mesh quality. Our algorithm modifies the existing grid by adding points at the
boundary intersections (red), splitting the intersected element, adding refinement
points (yellow) at the middle of all edges and centers of split elements, and refining
the split elements into well-shaped all-quad elements with good angles bounds.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

operations. For example, diamond–kite [12] applies recursive sub-
division based on a regular tiling composed of only diamonds and
kites, but does not handle domain boundaries. Q-Morph [13] is
a popular indirect approach that follows a sequence of system-
atic triangle transformations to create an all-quadrilateral mesh.
However, Q-Morph requires topological cleanup and smoothing
to guarantee the quality of the final all-quad mesh. Q-Tran [14]
is another indirect algorithm that produces quadrilaterals with
provably-good quality without a smoothing post-processing step,
andmanages to handle domain boundaries. Nevertheless, the class
of indirect methods typically suffers from a large number of irreg-
ular nodes that are connected to more (or less) than four mesh el-
ements, which is typically undesired in numerical simulations.

Direct approaches construct quadrilaterals without an in-
termediate triangular mesh. The advancing front algorithms
(e.g., paving [15]) generate all quadmeshes by placingmesh points
on the boundaries of the input domain, then recursively project-
ing edges on the front towards the interior of the domain to form
quads [16,17]. However, these typically suffer from stability prob-
lems that require heuristic cleanup operations. Grid based meth-
ods construct a uniform Cartesian or quadtree background grid
thenmodify it to conform to the domain boundaries [18,19]. These
methods are easy to implement. They can often provide qual-
ity guarantees [20–22]. However, many variations produce flat or
inverted elements before cleanup and smoothing, by snapping
multiple grid points to lie exactly along some curve. Square pack-
ing [23] and circle packing [24] methods can generate all quads.
Circle packing bounds the maximum angle to 120°, but does not
bound the minimum angle. In Atalay et al. [25], the minimum an-
gle is bounded.

Other methods include surface parameterization and orienta-
tion field methods [26–28] which find the smoothest orientation
field on a surface subject to a target direction or boundary condi-
tions. Similarly, the Quadcover [29] approach computes a global
continuous parameterization for an arbitrary given simplicial
2-manifold. However, it is not trivial to find globally optimal ori-
entation solutions.

In this paper, we describe a direct quadtree-based algorithm
that produces an all-quad mesh. It is stable, and all operations are
simple and local. The output mesh conforms to both the interior
and exterior of the domain geometry. It has provably-good quality
without post-processing cleanup. The key innovation is to move
grid points away from the geometry, rather than snapping onto
the geometry. An earlier version of this paper was published in
the proceedings of the International Meshing Roundtable (IMR)
2015 [30]. Here we have dramatically improved the provable
quality bounds, and demonstrated the method on more complex
domains.

1.2. Comparison to dual contouring

Dual contouring is a direct all quad meshing technique that
has attracted recent attention [31–33]. It starts with a uniform
structured quadrilateral mesh. It is intersected with the domain
geometry to produce polygons, which are then dualized to form
an all-quad mesh. We highlight a few key advantages for our
algorithm over dual contouring:

• Element Quality: Angle Bounds. Dual contouring adds points
exactly on the domain’s boundary, creating a large number
of flat or close to flat angles which degrades the quality of
the resulting mesh. To remove the flat angles, dual contouring
requires post-processing ‘‘pillowing’’ [34]: a layer of quads is
added between the geometry and the flat angle. Pillowing gives
smoothing the freedom to move the node of the flat angle. In
contrast, our algorithm creates a grid with points that are far
from the boundary. Intersecting the grid with the boundary
creates elements with balanced angles and aspect ratio. Our
method is clean-up free, and avoids pillowing and smoothing.
Fig. 1 contrasts the flat angles from dual contouring with our
balanced angles.

• Employing Quadtrees. A desired mesh feature is to allocate
more points around the boundary and less far from it. Our algo-
rithm can achieve that since it starts with a balanced quadtree
refinement, positioning more points ‘‘around’’ the domain’s
boundary. Dual contouring requires a uniform grid, and using
a quadtree would create non-quad elements.

• Local versus Global Operations. Modifying an existing dual
contouringmesh requires the creation of the dualmesh, andpil-
lowing operations propagate. Our algorithm, on the other hand,
can easily adapt to any input domain modification by applying
the same steps locally in the neighborhood of the domain mod-
ification.

1.3. Terminology

To easily distinguish between the initial grid, the domain ge-
ometry, and the final mesh, we use the following terminology. The
initial quadtree grid is composed of squares, each of which has four
sides and corners. Corners of adjacent smaller squares appear as
hanging nodes. The side length of a square is denoted s. (A uni-
form Cartesian grid is a special case of a quadtree.) The geometric
domain is composed of curves (which are straight line segments,
and two-sided) and vertices. The intersection of the quadtree and
geometry results in polygons and corner points connected by seg-
ments. Polygons aremeshedwithmidpoint subdivision; amidpoint
subdivides each segment, and a center is placed interior to the poly-
gon and connected to each midpoint. The final all-quad mesh is
composed of elements, edges, and nodes.

2. Algorithm

Our algorithm is described as a set of repelling, splitting, and
refinement steps. These are illustrated in Fig. 2 for the simple case
of a geometric circle and uniform grid. We summarize these steps
then explain the details in the following subsections.

1. Start with a strongly-balanced quadtree, refined to the level
that vertices and disjoint curves do not appear in the same
square.

2. Perturb the quadtree by repelling mesh points away from the
geometry. All squares intersected by a vertex or curve are split
into polygons, which conform to the geometry.
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(a) Initial uniform grid (black) and a circle-shaped
input geometry (red).

(b) Grid nodes repelled away, and mesh elements
split by input boundary.

(c) Intersected and deformed elements refined
into all quadrilateral elements.

(d) 2-ref template applied to get rid of any
hanging nodes in the final all-quad mesh.

Fig. 2. An overview of the all-quad meshing algorithm, applied to a circle shape. Starting with a uniform Cartesian grid, we repel points that are too close to the boundary
away from it with a ratio of the initial grid spacing, and split all elements that are intersected by the boundary. Each split or deformed element is then refined into four or
more all-quad elements using the mid-point subdivision rule. Finally, we apply the two-refinement templates to guarantee conforming refinement with no hanging nodes.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(a) An unbalanced quadtree. (b) A balanced quadtree. (c) A strongly-balanced quadtree.

Fig. 3. (a) An unbalanced quadtree of 3 levels. In (b), a balanced tree is one where no edge is shared between two squares with more than a difference of 1 in levels. In (c), a
strongly-balanced tree is one where no point is connected to two squares of more than a difference of 1 in levels. If either condition is violated, the larger square gets refined.
We require a strongly-balanced quadtree to enable the 2-ref templates in the last step.
3. Apply the midpoint subdivision rule to split polygons into quad
elements. Some other elements will possess hanging nodes.

4. Employ the two-refinement templates to resolve all hanging
nodes, generating the final conforming all-quad mesh with
good quality.

2.1. Quadtree initialization, refinement, and balancing

We start with a Cartesian grid and refine it to form a quadtree
that captures the fine details of the geometric domain boundaries.
In principle one could start with another decomposition. Our
algorithm requires that the quadtree is strongly balanced, where
corner-adjacent squares differ in size by at most one; see Fig. 3
for an illustration. For simplicity, in this version we chose uniform
square sizes along the boundaries.

2.2. Perturbing the quadtree

The goal of this step is to prevent small mesh edges and flat
and sharp angles. A raw geometry-quadtree intersection might
be arbitrarily close to another point, or at a very small angle. We
repel corners of squares away from nearby geometry, to be at least
distance δ from geometry. We choose δ to be s

4 , where s is the
size of the square containing the corner. We have two repelling
strategies, as shown in Fig. 4.
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(a) Grid points
close to boundary.

(b)
Geometry-normal
repelling.

(c) Grid-aligned
repelling.

Fig. 4. Repelling grid points away from boundary if they are too close to it as in
(a). In (b), repelling moves a corner in the direction normal to the boundary until
its Euclidean distance is exactly δ. In (c), the curve has slope larger than one and is
considered vertical. Therefore, repelling moves corners horizontally along grid lines
until they are δ away in the horizontal direction.

• Geometry-Normal Repelling. Corners are moved normal to a
curve until they are δ from it.
• Grid-Aligned Repelling. Corners are moved horizontally or
vertically until they are δ from a curve in the horizontal or
vertical direction. A horizontal curve has absolute slope less than
one; otherwise it is vertical. We move a corner vertically away
from a horizontal curve, and vice versa.

2.3. Polygon formation

Squares cut by the geometry are split into polygons. Squares cut
by a single curve are split into two polygons, either a triangle and a
pentagon, or two quadrilaterals. To recover a conforming all-quad
mesh, we refine these polygons using the midpoint subdivision
rule. Fig. 5 shows example elements before and after refinement.
We refine squares cut by two or more curves until only one curve
cuts a square. Note that when two curves meet at a common
vertex at a sharp angle, the element containing that angle will
have poor quality. In this case we do not refine adjacent squares
Fig. 5. Example grid-geometry intersection and the resulting midpoint subdivision mesh. Input geometry curves split squares into polygons: Triangles (T), Quads (Q),
Pentagons (P), or Hexagons (H). Each polygon is divided into quad elements. The top row shows intersected elements, while the bottom shows the split and divided mesh.
Columns show the cases when the boundary splits a quad element into (a) a triangle and a pentagon, (b) two quads, (c) a triangle, a quad, and a pentagon, (d) two triangles
and a hexagon, and (e) three quads.
Fig. 6. Refining a square containing a geometric vertex into all-quad elements: (a) an isolated vertex, (b) a hanging edge, (c) and (d) vertex with two line segments, (e)
vertex with three curves, (f) vertex with four curves. Other intersection scenarios can be decomposed into superpositions of these cases. The square is first split into four
quad elements, with pulling the new corners closer to the vertex to avoid the creation of a flat angle. Then, these quads and the squares sharing an edge with the initial
element get split into quad elements by midpoint subdivision. This generates nearby squares with hanging nodes, which are resolved in the last step of the algorithm.
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(a) Templates. (b) A quadtree with hanging nodes. (c) A balanced quadtree with templates applied.

Fig. 7. Applying the two-refinement templates to the strongly balanced quadtree with hanging nodes in Fig. 3. The two-refinement templates are shown in (a), and applied
to the marked mesh points in (b) to eliminate the hanging nodes as in (c).
(a) An extreme sharp corner
case of an isosceles triangle.

(b) Trapped point is centered
half way between geometry
curves.

(c) Splitting elements. (d) Subdividing elements.

Fig. 8. Applying our all-quad algorithm to a vertical isosceles triangle. The trapped
mid-point is centered between the two vertical geometry curves. Our algorithm is
flexible enough to handle this sharp corner, but does not provide a quality bound
in this case.

to separate these curves. The mesh between the two curves may
have stretched elements of poor quality, and the δ separation may
not be achievable.

2.3.1. Handling geometric vertices
We seek to preserve sharp features of the input boundary do-

mainwithout introducing new ones.We require that a square con-
tains at most one vertex. We insert a new mesh point coincident
with a domain vertex, and split any element that contains a vertex
before we apply midpoint subdivision.

Fig. 6 shows examples of initial, split, and refined elements for
a vertex.We consider isolated vertices, as well as vertices with one
ormore curves. In principle a vertexmay have an arbitrary number
of curves. For each square side that does not intersect a curve, we
introduce its midpoint as a mesh point, and pull it closer to the
sharp corner (a distance of s/8, where s is the square side length)
to avoid creating flat angles in the adjacent elements. Squares are
split into multiple regions by the curves, and vertex–midpoint
edges. Each region is a polygon that is meshed with midpoint
subdivision independently. Adjacent squares are alsomeshedwith
midpoint subdivision, introducing hanging nodes on some of their
neighbors. These, along with hanging nodes from adjacent squares
being refined to a different level, are resolved in the last step of the
algorithm.

Note that extreme sharp corner case might result in trapped
grid points with no enough space for repelling. In this case, we
position the grid point half-way between the trapping geometry
curves. See Fig. 8 for an extreme example of a vertical isosceles
triangle. Note that while our algorithm is flexible enough to handle
sharp corners, we only analyze quality bounds near single curves
in Section 3.

2.4. Handling hanging nodes

Squares with a geometric curve or vertex produced polygons
and were meshed with midpoint subdivision. We now consider
the remaining empty squares. Squares with no hanging nodes
are immediately mesh quads. Squares with hanging nodes are
meshed using the two-refinement (2-ref) templates with corner
marking [35]. The two-refinement templates shown in Fig. 7(a)
split an element with a hanging node into either three or four
quads. Using a checker board pattern, we mark square corners for
template application. In essence, the marking provides a local and
globally consistent way to pair adjacent squares with one or three
(a) Possible boundary-normal corner
movements.

(b) Corner movements for the
largest possible angle.

(c) Corner movements for the
smallest possible angle.

Fig. 9. Angles and edge lengths for boundary-normal repelling corners of a square.
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(a) Possible grid-aligned corner
movements.

(b) Corner movements for the
largest possible angle.

(c) Corner movements for the
smallest possible angle.

Fig. 10. Angles and edge lengths for grid-aligned repelling corners of a square.
Fig. 11. Angles in a triangular polygon split into quads along segments from corners to midpoints.
(a) Midpoint subdivision and ωA . (b) Max ω opposite a cut corner. (c) Min ω opposite a cut corner.

Fig. 12. Pentagon midpoint subdivision, and worst-case center angles ω.
hanging nodes together, providing an all-quad mesh that allows
size transitions. For example, the strongly-balanced quadtree with
hanging nodes in Fig. 3 is marked for 2-ref template application in
Fig. 7(b) and consequently refined in Fig. 7(c).

3. Analysis

In this section, we analyze the theoretical bounds on the ele-
ment quality in terms of angle bounds and edge lengths.Wedenote
themaximumangle:ω, theminimumangle:α, themaximumedge
length: emax, and the minimum edge length: emin. We take several
cases into consideration, proceeding from simple to hard cases, to
analytically study the impact of repelling and mid-point subdivi-
sion.We do not analyze the cases of a sharp input angle at a vertex:
the achieved angles and edge lengths depend on this angle.

3.1. Squares without geometry or moved corners

Quadtree squares that do not interact with the geometry are
meshed into quads using templates, depending on the hanging
Fig. 13. The worst-case angles in a quadrilateral polygon.

nodes. It is trivial to see that these result in edge lengths between
s and s/2 (for a side with a hanging node) and angles between 45°
and 135°, as can be seen in Fig. 7(a).

3.2. Squares with moved corners, without geometry

Corners of a square with no hanging nodes would be moved
in our algorithm using either boundary-normal repelling, or grid-
aligned repelling. Each approach results in slightly different angle
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(a) Boundary-normal repelling. (b) Grid-aligned repelling.

Fig. 14. Worst case corner angles for a pentagon.

bounds. Figs. 9 and 10 show the geometry of the largest and
smallest possible angles at a corner after repelling by δ. The edge
length |e| varies in both repelling cases between s − 2δ and
s + 2δ. Next, we derive formulas for the expected minimum and
maximum angles, and quantify their values for the experimental
choice of δ = s/4:

Boundary-Normal Repelling. Starting at Fig. 9(a), the largest
angle would be formed when a corner, say q, moves towards the
square’s center a distance δ in the direction q⃗p, while its neighbor
corners v and t move a distance δ outwards in directions such that
qv and qt are orthogonal to the displacements of v and t , respec-
tively. In this case, as shown in Fig. 9(b), the horizontal distance
between q and v is |uq| = s −

δ
√
2

− δ cos κ , while the vertical dis-

tance |uv| =
δ

√
2

+ δ sin κ . This yields an angle γ between vq and
qu, where tan γ = |uv|/|uq|. The maximum angle ω at corner q is
therefore equal to 90° + 2γ . When δ = s/4, the maximum angle
is ω = 148.8°.
(a) Initial grid and domain.

(b) Final all-quad mesh and a magnified region.

(c) Angle histogram. (d) Edge length histogram.

Fig. 15. Application of the all-quad meshing algorithm to a valentine flower shaped domain.
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(a) Initial grid and domain.

(b) Final all-quad mesh and a magnified region.

(c) Angle histogram. (d) Edge length histogram.

Fig. 16. Application of the all-quad meshing algorithm to a face-shaped domain.
On the other hand, the smallest angle would be formed when
a corner, say p, moves outwards away from the square’s center
a distance δ in the direction q⃗p, while its neighbor corners t and
v move a distance δ towards the square’s center in directions
such that pt and pv are orthogonal to the displacements of t and
v, respectively. In this case, as shown in Fig. 9(c), the horizontal
distance between p and t is |up| = s +

δ
√
2

− δ cos θ , while the

vertical distance |ut| =
δ

√
2
+δ sin θ . This yields an angleβ between
pu and pt , where tanβ = |ut|/|up|. Theminimumangleα at corner
p is therefore equal to 90°−2β .When δ = s/4, theminimumangle
is α = 48.67°.

Grid-Aligned Repelling. This repelling approach can be per-
ceived as a special case of the boundary normal repelling that lim-
its the points’ movements to the grid lines. Similar to the analysis
above, we start with an initial square as shown in Fig. 10(a). The
largest angle would be formed when two opposite corners, say v
and t move a distance δ outwards from the square on the vertical
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(a) Initial grid and domain.

(b) Final all-quad mesh and a magnified region.

(c) Angle histogram. (d) Edge length histogram.

Fig. 17. Application of the all-quad meshing algorithm to a cat-shaped domain.
and horizontal grid lines, respectively, and the corner q moves a
distance δ on either grid line. In this case, as shown in Fig. 10(b),
the largest angle can be found to be ω = 90° + tan−1( δ

s−δ
) +

tan−1(2δ/s). When δ = s/4, ω = 135°.
On the other hand, the smallest angle would be formed when

two opposite corners, say v and t move a distance δ inwards, on the
horizontal and vertical grid lines, respectively, and corner pmoves
a distance δ on either grid line. In this case, as shown Fig. 10(c),
the smallest angle can be found to be α = 90° − tan−1( δ

s+δ
) −

tan−1(2δ/s). When δ = s/4, α = 52.125°.
The bounds on the angles at the center node of the templates are

better than the above corner-angle bounds. The template for two
hanging nodesmay split a corner angle. The angle bounds resulting
from either repelling approach are then (48.67°, 148.8°) and the
edge length bounds are (0.5, 1.5)s.

3.3. Squares with geometry

Squares with geometry are divided into 3–6 sided polygons by
the curves of the geometry. Some corners may be moved away
from the geometry to ensure a δ clearance.

3.3.1. Edge lengths bounds
For a squarewith a vertex, amoved side length is atmost s+2δ,

bounded by the case of a square corner–corner edge with both
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(a) Initial grid and domain.

(b) Final all-quad mesh and a magnified region.

(c) Angle histogram. (d) Edge length histogram.

Fig. 18. Application of the all-quad meshing algorithm to a lake shaped domain.
nodes moved away from each other by δ. For a square cut only by
curves, we consider moving nodes normal to the boundary (which
provides upper-bounds for grid-alignedmovements aswell). Since
curves are straight, two adjacent square corners are moved in the
same direction. If a single corner is moved, then we have |e|2 <
s2 + δ2. An edge along a curve may not be longer than square
diagonal, |e| <

√
2s. Any corner–corner distance is at least δ,

and hence corner–midpoint edge is at least δ/2. Any vertex center
to midpoint edge is at least δ, by construction. We now consider
centers that are not vertices. Anypolygon center is at least δ/3 from
a non-center edge by the following. The worst case is a triangle.
Let one edge be the horizontal axis. The other corner must be at
least δ from the edge. Since the center is placed at the geometric
center, in particular its vertical coordinate is one-third of each of
the corners’ vertical coordinate, its height above the edge is at least
δ/3. To summarize, for δ = s/4,
• corner–midpoint curve edges |e| ∈ s[0.125, 0.71]
• and side edges |e| ∈ s[0.125, 0.52];
• center–midpoint edges |e| ≥ s/12.
3.3.2. Square corner angles
The square corner angles are bounded similar to the uncut

squares case, where α = 48.6°, and ω = 148.8°.

• square corner angles ∈ (48.6°, 148.8°).

3.3.3. Cut corner angles
The limiting case for angles at a node where a curve crosses a

square side occurswhen each cornermoves δ away from the curve,
and the pre-cut side is at most emax for sides, 1.03s. We see that
sinα = 2δ/emax. Hence for δ =

s
4 ,

• cut corner angles are ∈ (29°, 151°).

3.3.4. Center and midpoint angles
We consider each case of the number of sides of a polygon.
Triangle.We first consider a triangle, that is a curve cutting off a

corner of a square. See Fig. 11. Theworst case is when K is already δ
away from the curve before movement, and the curve is as close to
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(a) Initial grid and domain.

(b) Final all-quad mesh and a magnified region.

(c) Angle histogram. (d) Edge length histogram.

Fig. 19. Application of the all-quad meshing algorithm to an intersecting-circles shaped domain.
K as possible on one square side, and as far away as possible on the
other. We place center c at 1/3 of the way from km to K , which is
2/3 of the way to D. (This is the triangle centroid, the average of its
corners, andwhere all three of the corner-to-midpoint linesmeet.)
Fromsimilar triangleswe see ̸ ambmk = ̸ ABc = BA, etc., as labeled
in the figure. Hence ωK = 180° − AB − BA, ωA = 180° − CB − BC
and ωB = 180°− AK − KA. Using the cotangent angle relationships
for midpoint subdivided triangles (e.g. Section A.3.2 in [36,37]), we
have cot KB = cot B+2 cot K , etc. Given {A, B, C}, these allow us to
derive AB, etc., and hence the ω’s. We consider two extreme cases.
The first is isosceles with |KB| = |KA|. Then ωB = ωA ≈ 108°, and
ωK ≈ 143.2°. The second case is extreme disparity in edge lengths,
|KB| = s and |KA| = δ. (If K was repelled, then KA may be longer,
but the resultant angles are less extreme.) Then ωA ≈ 158.8°, and
ωB ≈ 40.6° and ωK ≈ 160.6°.

We bound midpoint angles in the same way. We see that the
midpoint angles are {A+BA, K +BK , B+AB, K +AK , B+Kb, A+KA}.
Again considering the extreme edge lengths,wehave {̸ am, ̸ bm} ∈

(26.5°, 153.5°). Also ̸ km ∈ (28°, 152°).
For triangles,

• center angles are in (40.6°, 160.6°).
• midpoint angles are in (26.5°, 153.5°).

Quadrilateral. This is the case of a square cut by a curve from
one side to its opposite. Observe that the center is placed where
the two lines connecting opposite midpoints meet. (This is not the
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(a) Initial grid and domain.

(b) Final all-quad mesh and a magnified region.

(c) Angle histogram. (d) Edge length histogram.

Fig. 20. Application of the all-quad meshing algorithm to batman-shaped domain with sharp corners.
center of mass in general, but is the average of the four corners.)
The worst angles occur at the midpoint of the curve and the cut
corners; see Fig. 13. The smallest angle is γ , and the largest angle
is its supplement γ . The worst case is when neither quadrilateral
corner wasmoved, but the curve is δ away from one of the corners,
and almost passes through the corner of square on the other side
of the curve. In this case the curve has maximum slope 3/4, so
γ ≥ arctan(4/3), and
• center and midpoint angles ∈ (53.1°, 126.9°).

Pentagon. Here we consider a square cut by a single curve. One
of the square diagonals does not intersect the curve. We place the
center c at the centroid of the triangle 1AKB on the far side of that
diagonal from the curve. See Fig. 12.

Consider the corner and midpoint angles. The worst case is
when A and B have been repelled δ from the curve, so we must
first bound angles A, B, and K . For geometry-normal repelling,
Fig. 14(a), we have K ≤ 90 + 2θ where θ ≤ 12.2°, or K <
114.3° and {̸ BAK , ̸ ABK} > 32.8°. (Note ̸ BAK and ̸ ABK are not
mesh angles.) Using the cotangent relations, ωK ≤ 155.7, and the
midpoint angles along KA and KB are in (44.9°, 135.1°). (For axis-
aligned repelling, we have K ≤ 90°+ θ2 ≤ 104.1°, and the bounds
are subsumed. See Fig. 14(b).)

Consider the center angles. ForωA, the worst case is when there
is no repelling. See Fig. 12(a), where ωA < ̸ amckm < 108.5°.
The same holds for ωB. For the other two central angles, we note
that the midpoint of the curve edge must be inside the lower-left
quadrant in Fig. 12(b). Hence ω < γ = γ1 + γ2 < 76° + 41.2° =

117.2°.
For the minimum center angles, we have ωA ≥ AK > 48.3°.

The same holds for ωB. For the central angles involving the curve,
the worst case is when the curve barely cuts the box corner, see
Fig. 12(c). The angle subtends nearly half of a box length, and ω >

30.9°. For the curve and the sides cut by the curve, the midpoint
angles are in 45°, 135°.

For pentagons,

• center angles are in (30.9°, 155.7°).
• midpoint angles are in (44.9°, 135.1°).

Two or more curves in a square. The regions bounded by one
curve and the square have meshes and angle bounds as described
in the triangle and square cases. It remains to consider the region
between two curves: a square, pentagon, or hexagon. See Fig. 5.
These cases only occur near sharp angles, and the obtained bounds
depend on the input angles.We do not analyze these explicitly, but
observe reasonable quality compared to the element containing
the sharp vertex.
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(a) Initial grid and domain.

(b) Final all-quad mesh and a magnified region.

(c) Angle histogram. (d) Edge length histogram.

Fig. 21. Application of the all-quad meshing algorithm to star-shaped domains with sharp corners.
3.4. Quality bound summary

Angles are provably bounded away from 0° and 180°, and edge
lengths are within a reasonable constant factor of square side
lengths, except perhaps in the presence of input curves that meet
at a sharp angle.
• Mesh angles are in (24.3°, 160.6°).
• Mesh edge lengths are in s(0.08, 1.5).
4. Experimental results

To illustrate the capabilities of our algorithm, we apply it to
some domains with smooth and sharp features. Figures 15, 16, 17,
18, and 19 show initial uniform meshes and final all-quad meshes
applied to a few smooth domains (flower-, face-, cat-, lake-, and
two circles-shaped domains). Our algorithm generates angles that
aremostly 90° and arewell-bounded between 45° and 135°. On the
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(a) Initial grid and domain.

(b) Final all-quad mesh and a magnified region.

(c) Angle histogram. (d) Edge length histogram.

Fig. 22. Application of the all-quad meshing algorithm to a double-hex domain with sharp corners.
other hand, although our analysis focused on smooth geometries,
we show some experimental results applying our algorithm to
geometries with sharp corners. In specific, Figures 20, 21, 22, and
23 show initial uniform meshes and final all-quad meshes applied
to a few domains with connected regions and sharp features
(batman-, star-, double hex-, and five holes-shaped domains).Most
but not all angle are bounded between 45° and 135° in these cases
as shown in the histograms.

Quality metrics of the resulting meshes are summarized in
Table 1, including minimum and maximum angles, and the
minimum and average ratios of shortest to longest edge lengths
in a quad.
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(a) Initial grid and domain.

(b) Final all-quad mesh and a magnified region.

(c) Angle histogram. (d) Edge length histogram.

Fig. 23. Application of the all-quad meshing algorithm to a domain with sharp corners: square with five eight-sided holes.
5. Conclusions

We described an algorithm for all quad meshing of non-convex
domains, with connected regions, conforming to both the interior
and exterior of the domain. Our algorithm is robust and provably-
correct. It does not require post-processing cleanup operations,
such as pillowing, to control the angle bounds of the final mesh,
and can easily handle smooth shapes aswell as domainswith sharp
features and corners. Our next steps are to adaptively vary the
sizing function along the boundary. We also seek to demonstrate
the method on domains with many curves meeting at a single
vertex at sharp angles. A natural extension of the presented
algorithm is to apply the same steps to 3d all-hex meshing. This
is simply doable because the steps of our algorithm (repelling,
splitting, mid-point subdivision, 2-ref template employment) can
be employed in 3d in a similar fashion, especially for smooth
surfaces. Some cases of sharp features would certainly be more
challenging. The extent of the 3d analysis and implementation is
outside the scope of this paper and will therefore be addressed in
an upcoming publication.
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Table 1
Mesh quality examples: v is the number of mesh vertices, E is the number of
mesh elements, θmin and θmax are the minimum and maximum angles, αmin is the
minimum ratio of shortest to longest edge length in a quad, and αavg is the average
ratio of shortest to longest edges in a quad.

Input domain v E θmin θmax αmin αavg

Smooth geometries

flower 4150 4130 45° 135° 0.107 0.705
face 3580 3496 45° 135° 0.332 0.714
cat 5 466 5417 45° 135° 0.132 0.709
lake 153997 153964 45° 135° 0.064 0.718
2 circles 3 220 3190 45° 135° 0.108 0.690

Sharp features geometries

batman 26908 26747 31° 145° 0.095 0.866
star 11511 11410 27.2° 160.6° 0.083 0.864
double hex 23389 23298 22.1° 157.2° 0.127 0.847
5 holes 31773 31679 22.5° 169.7° 0.012 0.847
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