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• Local smoothing to optimize Voronoi
cell aspect ratios.

• Simultaneously achieve random and
well-spaced points.

• Image filtering applications.
• Meshing applications.
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a b s t r a c t

We explore the notion of a Well-spaced Blue-noise Distribution (WBD) of points, which combines two
desirable properties. First, the point distribution is random, as measured by its spectrum having blue
noise. Second, it is well-spaced in the sense that the minimum separation distance between samples is
large compared to themaximum coverage distance between a domain point and a sample, i.e. its Voronoi
cell aspect ratios 2β i are small. It is well known that maximizing one of these properties destroys the
other: uniform random points have no aspect ratio bound, and the vertices of an equilateral triangular
tiling have no randomness. However, we show that there is a lot of room in the middle to get good
values for both. Maximal Poisson-disk sampling provides β = 1 and blue noise. We show that a standard
optimization technique can improve the well-spacedness while preserving randomness.

Given a random point set, our Opt-β i algorithm iterates over the points, and for each point locally
optimizes its Voronoi cell aspect ratio 2β i. It can improve β i to a large fraction of the theoretical
bound given by a structured tiling: improving from 1.0 to around 0.8, about half-way to 0.58, while
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preserving most of the randomness of the original set. In terms of both β and randomness, the output
of Opt-β i compares favorably to alternative point improvement techniques, such as centroidal Voronoi
tessellation with a constant density function, which do not target β directly. We demonstrate the
usefulness of our output through meshing and filtering applications. An open problem is constructing
from scratch a WBD distribution with a guarantee of β < 1.

Published by Elsevier Ltd
1. Introduction

Many applications desire a distribution of points that are not
too close to one another, yet are evenly distributed throughout the
domain. Such points are well-spaced, or separated yet dense. The
separation distance improves efficiency; close points often add lit-
tle information, yet they consume time and memory. Well-spaced
points reduce the interpolation and simulation error in scientific
applications. Points spreaduniformly canhelp reduce noise or vari-
ance. Graphics applications often desire randomness to help re-
duce aliasing or bias. Blue noise refers to distributions that are
roughly uniform random with no preferred inter-point directions
or distances. Note thatwell-spacedness is a localmeasure of nearby
points. In contrast, blue noise is a global measure dependent on
the distances between far points. Some methods for well-spaced
points often do not produce blue noise: e.g. periodic tilings such as
lattices and structured meshes; raw low discrepancy sequences;
and Delaunay Refinement (DR).

In the 1990s, the fracture mechanics community studied the
effects of mesh structure in finite element fracture simulations
where the crack directions are limited to mesh edges [1]. They
concluded that uniform random points lead to uniform random
edge orientations, and more physically realistic simulations. Both
Delaunay and dual Voronoi elements are of interest. The initial
techniques for generating such meshes included simple jittering,
perturbing the position of points. Interest in the topic recently re-
vived, and researchers have developed more sophisticated tech-
niques, including random sampling [2–6]. Computer graphics has
a long-standing interest in techniques for blue-noise distributions,
for applications such as rendering [7,8], animation [9], model-
ing [10,11], and imaging [12,13]. Graphics provides standardized
methods for determining if a distribution has blue noise [14].

The well-spacedness of a distribution can be characterized by
two measures: conflict, which is about the spacing between sam-
ples, and coverage, which is about how samples collectively cover
the underlying domain. The conflict distance rf is the minimum
distance between two samples, the coverage distance rc is themax-
imum distance between a domain point and a sample, and β =

rc/rf is our spacing measure. The allowed (or target) values in an
algorithm and the achieved values in its output are different con-
cepts. In typical algorithms, these distances are enforced a priori
by placing disks around sample points. On output, sample points
might be farther apart than the enforced minimum, and domain
points might be closer to a sample than the enforced maximum.
See Figs. 1–3 for illustrations and Section 4 for formulations.

Different methods achieve various degrees of conflict and cov-
erage. Dart throwing [7] enforces rf , and attempts to have output rc
close to it, but usually falls short. Maximal Poisson-disk Sampling
(MPS) [16] enforces both and has rf = rc . Two-radii MPS [15] also
enforces both, but encourages more randomness (and less unifor-
mity) by using rc > rf . In practice, for even a few thousand points,
MPS output rf is just slightly larger than the enforced rf , and output
rc is just slightly smaller than the enforced rf , because a local case
similar to Fig. 3(b) or (c) is very likely. That is, MPS guarantees out-
put β ≤ 1, and usually achieves β very close to 1. Two-radii MPS
guarantees output β ≤ target β , and typically achieves something
close to it.
There is some correlation between coverage/conflict and ran-
domness, but the two are not proportional. At one extreme,
uniform random points (also known as white noise or Poisson
Sampling PS without disks) has unbounded coverage and conflict.
Spectrum plots of MPS and two-radii distributions [15] and Opt-
β i (Fig. 9) show a strong correlation between larger achieved β and
more randomness.

However, this is not the full story. In two dimensions, the ver-
tices of equilateral triangle tiling achieve the minimum possible β ,
with rc = rf /

√
3. It is the only distribution achieving this value,

and distributions coming close to this value bear some resem-
blance to it. The vertices of its dual, hexagonal tiling, have rc = rf .
Square tiling gives a value of 1/

√
2, somewhere in between. By

adding or moving a single point of any of these, one can generate a
periodic tiling with any larger β desired, ∞ > β > 1/

√
3. Delau-

nayRefinementDR [17,18] is a deterministic process for generating
a triangulation. Its output vertices achieve rc ≤ rf , and its spectra
show features of both regularity and MPS. None of the tilings or
algorithms mentioned in this paragraph are random. However, a
random algorithm such as MPS or even PS could in principle pro-
duce one of these, albeit with very small probability. The possible
β achieved by different distribution types are shown in Fig. 2.

Any random sampling method that only considers local criteria
when placing points, and nevermoves them, cannot be guaranteed
to achieve any target value of βt < 1. The alternatives are to con-
sider global constraints, or to adjust point locations, as Opt-β i does
in this paper. The reason that local decisions and fixed locations are
insufficient is that it is easy to ‘‘paint yourself into a corner’’, mean-
ing that selecting points independently can create a subregion that
is impossible to cover without placing points too close together.
This can easily happen for any value of β < 1; see Fig. 3. Achieving
β < 1 is actually more challenging than achieving β = 1 [16] or
β > 1 [15].

To summarize,

– β > 1 is produced by two-radii MPS [15], and the user may
selectβ . Uniform samplingwithout disks produceswhite noise,
which may have β approaching ∞.

– β = 1 is produced by traditional maximal Poisson-disk sam-
pling [16]. Stopping short of maximality produces β > 1.

– β < 1 is produced by Opt-β i and it tends to make the distri-
bution more uniform. Incremental insertion rarely achieves β
significantly below 1.

– The smaller the β , the more uniform a point set tends to be,
but this is a feature of both the random process generating the
points andβ . In twodimensions,β = 1/

√
3 indicates a periodic

equilateral triangle tiling. A periodic structure can be tuned to
any larger value of β . The minimum achievable β is dimension
dependent, but β ≥ 1/

√
3 in two dimensions, and β ≥ 0.5 by

definition.

2. Spacing measures in other contexts

There are prior formulations quantifying both conflict and cov-
erage, such as minimal spacing rf in dart throwing [7], normalized
spacing ρ [19], and coverage radius rc [15]. Discrepancy measures
spatial uniformity by comparing the fraction of points in any box
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(a) Two-radii MPS, β > 1. (b) MPS, β = 1. (c) Opt-β i , β < 1. (d) MPS mesh, β = 1. (e) Opt-β i mesh, β = 0.746.

Fig. 1. Maximal Poisson-disk Sampling (MPS) with different uniformity as measured by β =
rc
rf
. In Poisson-disk sampling, each black sample point must be outside all

other points’ red conflict disks with radii rf . A distribution is maximal if the blue coverage disks with radii rc cover the entire domain. Differentiating the two types of disk
results in three sampling scenarios. (a) Two-radii MPS [15], where rf < rc . The distribution is less uniform and more random than MPS. (b) Maximal Poisson-disk Sampling
(MPS) [16], where rf = rc . (c) Opt-β i , with rf > rc ; this work. Opt-β i is more uniform and less random than MPS, improving the well-spacedness while retaining most of
the blue-noise properties, as seen in the meshes in (d) and (e). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 2. Distributions by aspect ratio β , in two dimensions. Here, △, �, and are
the vertices of the equilateral triangle, square, and regular hexagonal tilings of the
plane. PS is Poisson sampling without conflict disks. DR is Delaunay Refinement.
MPS is Maximal Poisson-disk Sampling. No point distribution can achieve β <

1/
√
3 in two dimensions, or β < 0.5 in any dimension.

to the fraction of the domain (volume) in that box [20]. In spatial
statistics, in the hard-core Strauss disk process, rf is known as the
inhibition radius and rc is known as the coverage radius. In bio-
logical system analysis, e.g. forestry image analysis [21], one usu-
ally observes a (non-maximal) point distribution that is assumed
to come from this process, then seeks to estimate the hidden gen-
erating parameters.
In computational geometry, r if is twice the inradius of the ith
Voronoi cell. And r ic is known as the outradius of the Voronoi cell,
the distance from a seed point to the furthest Voronoi vertex of its
cell. The outradius/inradius ratio is the Voronoi cell aspect ratio,
A = 2β i. Since outradius ≥ inradius, A ≥ 1 and β i

≥ 0.5 in
any dimension. A point set with maximum aspect ratio A is called
an A-well-spaced set [22]. Much effort [23,24] has been devoted
to generating A-well-spaced sets, for both uniform and spatially
varying densities. Usually the upper bound on A is greater than 2,
but we strive for A < 2.

In graphics, a common measure of point distributions is the
relative radius ρ [19]. Its definition starts with non-overlapping
disks with constant rf /2 radius. The packing density η is the
fraction of the domain area covered by these disks; η is itself a
popular measure in physics. Given a unit-area periodic domain
containing N disks, rmax is the radius achieved by the densest (in
terms of η) known arrangement, assuming that N divides evenly
into that tiling. In two dimensions, rmax = const/

√
N . We define

ρ = rf /(2rmax), where ρ ∈ [0, 1]. Thus ρ is directly related to rf ,
but only indirectly related to rc throughN . For example, ifwe create
(a) No solution. (b) One solution. (c) Painted into a corner.

Fig. 3. Trying to achieve target ratio βt using fixed rc and rf disks. In a solution the red rf conflict disks must be free of other samples, and the blue rc coverage disks must
cover the entire domain. In (a), any new blue disk centered outside the red disks would be too small to cover the point equidistant from the three extant samples. In (b),
there is only one solution: vertices forming equilateral triangles. In (c), algorithms that incrementally add points and never move them can easily get stuck even if βt is very
close to 1. The red center is too isolated to be coverable by blue disks, just as in (a). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
(a) MPS, β = 1.0. (b) CVT, β = 0.827. (c) DistMesh, β = 0.873. (d) Far-Point, β = 0.965. (e) Opt-β i , β = 0.746.

Fig. 4. Final mesh for a periodic unit box after applying various methods to the input MPS in (a). While CVT and DistMesh improve the quality of the majority of the Voronoi
cells, they tend to lose randomness at larger values of β . Far-Point on the other hand tends to violate the coverage condition. None of the four methods were able to achieve
β < 0.7 in general.
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a gap by removing one vertex (disk) from an equilateral triangle
tiling, then ρ decreases by a factor of

√
N − 1/

√
N , a negligible

change if N is large, but rc and β almost double from 1/
√
3 to 1. In

our context, the number of points N is fixed, so we have β ∝ rc/ρ.
Area coverage and rmax are global averages over the disks, whereas
r ic is a maximum achieved in a local neighborhood of a point, its
Voronoi cell. We think that β i is a better measure of local spacing
than ρ, because β measures local gaps and ρ does not.

3. Comparison methods

We compare our method against three alternative sampling
techniques. While they all strive to improve the spatial quality of a
distribution, none optimize β i directly as we do.

3.1. Centroidal Voronoi tessellation (CVT)

A CVT [25] is defined as a distribution in which each point is
at the center of mass of its Voronoi cell. The earliest technique
to achieve a CVT is Lloyd’s iteration [26], iteratively moving each
point to the center of its Voronoi cell. Recently, Liu et al. [27] im-
proved the speed of converging to a CVTby recognizing the second-
order smoothness of its energy function, and optimizing it using a
quasi-Newtonmethod. But the converged solution is the same. The
CVT converges to an equilateral triangle tiling, absent boundary ef-
fects. For this reason, many applications stop short of convergence.

Based on the iterative method definition, onemight expect CVT
to improve r ic , and not degrade r if , at least in the average sense. Our
experience is that CVT tends to decrease the maximum coverage
radius rc , but does not provide any control over theminimumdisk-
free radius rf .

3.2. DistMesh

DistMesh is a popular point relocation technique that aims to
make theDelaunay edge length distributionmatch a user-specified
sizing function [28]. This technique simply treats each Delaunay
edge as a spring that can expand or contract; but if its length is less
than the user-specified sizing function it can only expand. For the
uniform case, the sizing function is constant and is usually chosen
to be 20% more than the desired edge length. While this technique
is good for improving the quality of the majority of the elements,
it is not as good for improving the worst-quality elements.

In contrast to CVT, DistMesh tends to increase the disk-free
radius rf of an MPS; however, it does not provide any control over
the coverage radius rc .

3.3. Farthest neighbor (Far-Point)

Farthest neighbor [29,30] is an iterative technique that moves
each point to theVoronoi vertex farthest from its immediate neigh-
bors. As such, it locally optimizes r if , and ignores r ic . The algorithm
works by finding the Delaunay neighbors N = {xj} of sample xi,
computing the Voronoi vertices of N (without xi), then reinsert-
ing xi at the Voronoi vertex with the maximumminimum distance
to N . If the points are not in convex position, there will be some
Voronoi vertices far from the convex hull of N ; these vertices are
ignored.

This technique tends to increase all Delaunay edge lengths, not
only the short ones.

3.4. Our method, Opt-β i

We propose Opt-β i, local optimization of the β i of the initial
MPS sample positions, stopping when a user-specified ratio βt =

rc/rf is achieved. By tuning β , our method can produce sample
Table 1
Statistics of meshes in Fig. 10 mesh; α denotes triangle angles.

Algorithm β rc
rMPS

rf
rMPS

minα maxα

(a) Coarse mesh, rMPS = 0.0314, Fig. 10 left column.

MPS 1.0 1.0 1.0 31 115
CVT 1.226 0.931 0.759 24 103
DistMesh 1.089 1.012 0.929 31 114
Far-Point 1.048 1.043 0.996 32 106
Opt-β i 0.988 0.995 1.007 32 110

(b) Fine mesh, rMPS = 0.0157, Fig. 10 right column.

MPS 1.0 1.0 1.0 30 117
CVT 1.02 0.989 0.852 33 96
DistMesh 1.07 0.869 0.925 34 107
Far-Point 1.06 1.106 1.047 31 113
Opt-β i 0.932 0.939 1.008 34 99

distributions with a level of uniformity and randomness as desired
by the users. There is no guarantee that our method can achieve
any value of β < 1, or even that β will not increase, but in practice
we can obtain β ≈ 0.75.

In the sampling methods of Section 1, at least one of rc or rf is
a fixed enforced value. Opt-β i is different, in that these are both
measured quantities of the output. We simultaneously adjust both
rc and rf in pursuit of optimizing their ratioβ . Moving pointsmight
increase rf or decrease rc . Experiments show that, despite this pos-
sibility, we usually simultaneously achieve both an increased rf
and a reduced rc , while maintaining good spectra; see Table 1 and
Fig. 5. Fig. 4 compares the methods over a periodic square.

Our paper has the following main contributions.
– Introducing and formalizing the notion of Well-spaced Blue-

noise Distributions (WBDs).
– Proposing an algorithm, Opt-β i, to generate a WBD with con-

trollable uniformity and randomness through βt .
– Demonstrating the benefits of a WBD and Opt-β i through ap-

plications in geometry meshing and image filtering.

4. Formal definitions

Conflict radius rf . The minimum achieved spacing between any
pair of samples in the set S. For example, for MPS, at least
the enforced Poisson-disk radius.

Coverage radius rc . Any point in the domain Ω will be at most rc
away from the nearest sample in S. Equivalently, the set
of spheres with radius rc will cover the entire domain.

Ratio β . The ratio between conflict and coverage is measured by
β = rc/rf . This is the ultimate objective of our method.

Initial radii. The input (MPS) point set has rMPS = rf = rc .
During the local optimization procedure, we only consider the

local values of these quantities, i.e.

Adjusted point xi. We move one point at a time, xi ∈ S.
Conflict radius r if . Distance from xi to its nearest xj ∈ S.
Coverage radius r ic . Distance from xi to the farthest vertex of its

Voronoi cell, i.e. the distance to the domain point farthest
from xi that is not closer to some other sample xj.

Local ratio β i. This is r ic/r
i
f . Note that

β =

max
i

r ic

min
j

r jf
≥ max

i
(β i) = max

i


r ic
r if


. (1)

5. Opt-βi algorithm

We now describe our algorithm in detail. We start with anMPS,
or some other distributionwith blue noise, withβ = 1. (Recall that
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(a) Voronoi cell aspect ratio.

(b) Delaunay edge lengths.

(c) Delaunay angles.

Fig. 5. Distribution of quality measures. The left column compares the different methods, and the right column compares Opt-β i for different β .
the MPS output might have β < 1, but in practice β is so close to 1
that we just say that β = 1.) It is possible to start with other distri-
butions, such as the output of DR, but, since our method removes
noise, the output will be limited by the noise in the input. In prin-
ciple it is also possible to start with a distribution with β > 1; in
this paper we assume that such distributions are enriched to max-
imality with an MPS algorithm so that β = 1.

The user specifies the target β = βt , the desired trade-off be-
tween spacing and randomness. For two dimensions, βt ∈ [

1
√
3
, 1].

Let β i
= r ic/r

i
f denote the local coverage/conflict ratio. Ideally,

one might wish to simultaneously adjust the location of all points
to find a global minimum for β , or at least to minimize the
maximum of β i over all xi. Amore practical method is to iteratively
move each xi towards its local optimum [31].

We iteratively reposition each sample point xi to locally mini-
mize its β i, until globally β < βt .

To reposition xi, we perform ten iterations of Nelder–Mead [32].
Nelder–Mead is a downhill-traveling optimization heuristic that
requires only function values, not derivatives. Its state consists of
three candidate points c{1,2,3}, and the β i function values if xi was
repositioned at those locations. To get started, we select the first
candidate point c1 at xi, the second c2 at xi shifted in the x-axis
Fig. 6. Variation of β as the iteration proceeds.

direction by rMPS/10, and the third c3 at xi shifted in the y-axis
direction by rMPS/10. These c{1,2,3} define a triangle, tilted in three
dimensions by assigning the respective height β i to its corners.
Nelder–Mead replaces the high corner by some point on the other
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Fig. 7. Spatial analysis via zone-plate sampling. Each uses about 122,500 samples (about 1 sample per pixel) and a 3-pixel-wide Gaussian kernel.
Fig. 8. Voronoi cell valence and ρ for different β achieved by Opt-β i and CVT. Recall that β ∝ rc/ρ. See also Fig. 8 in ‘‘Blue Noise. . . ’’ [38].
(a) CVT, β = 0.827. (b) DistMesh, β = 0.873.

(c) Far-Point, β = 0.965. (d) MPS, β = 1.0.

(e) Opt-β i , β = 0.85. (f) Opt-β i , β = 0.80.

(g) Opt-β i , β = 0.75. (h) Opt-β i , β = 0.70.

Fig. 9. Spectral analysis. Shown here are the Fourier spectrum analyses of various sample patterns. Each case contains ∼10k samples in a unit box.
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(a) MPS, β = 1.0. (b) MPS, β = 1.0.

(c) CVT, best β = 1.226. (d) CVT, best β = 1.02.

(e) DistMesh, β = 1.089. (f) DistMesh, β = 1.07.

(g) Far-Point, β = 1.048. (h) Far-Point, β = 1.06.

(i) Opt-β i , β = 0.988. (j) Opt-β i , β = 0.932.

Fig. 10. Applying various methods to a coarse (left) and fine (right) mesh of a non-convex two-dimensional domain. For the finer mesh, the boundary effects are less
constraining, and a smaller β was achieved.
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side of its opposite triangle edge, and recomputes a new triangle
and its tilt. We flip-flop through ten triangles and stop.

Each candidate may have different Delaunay neighbors than
the original point; we calculate β i using the candidate’s Delaunay
neighbors, rather than the original points’ neighbors. Sometimes,
especially in initial iterations, xi moves outside of the convex
hull of its initial Delaunay neighbors: r ic decreases as xi moves
towards the convex hull, but it may happen that r if increases more
rapidly, yielding a local improvement in β i. We experimentedwith
preventing this from happening, but found it was faster to allow
this to happen.

Often, improving β i causes a nearby point’s β j to get worse.
This is a commonphenomenon inmesh smoothing algorithms, and
the common approach is to allow this to happen, and attempt to
remedy it later during the optimization of xj.

We sweep over all xi, locally optimizing and updating their
positions. Eachupdate happens immediately. That is, for a neighbor
xj of xi, we use the updated position of xi rather than its initial
position at the start of the sweep. Our input comes from Simple
MPS [33]. The output of that algorithm provides a nice ordering to
the points, by scan lines. SimpleMPS divides the domain into boxes
of side length rMPS, and each box has at most one point. On output
the points are lexicographically ordered by the box they lie in, first
by row then by column. This is the order the points are visited
during our Opt-β i sweep, regardless of where they later migrate
to. This is better than considering points in random order.

In each sweep, we optimize the position of all xi, even if their
local β i is already small. We tried iterating over just the large-β i

points, but this tended to get us stuck in a local minimum.
For large targets, e.g., βt > 0.9, we often get far below it in one

or two iterations. To prevent that, we use a damping factor,moving
xi only about half-way (0.6–0.8) of the distance from its initial to its
Nelder–Mead optimized position.

Local patch smoothing is common for unstructuredmeshes [34].
Unlike patch smoothing, the connectivity of the implied mesh, the
set of Delaunay neighbors of each sample, changes throughout our
algorithm, and in our comparison methods.

6. Analysis

6.1. Angle and edge bounds

Here, we recall the relationship between β = rc/rf and the
edge lengths |e|, empty circumcircle radius R, and angles α in a
Delaunay Triangulation (DT) of the point set. The relationships are
well known, and they form the basis for the Delaunay refinement
[17] family of algorithms. We restate the succinct summary from
Mitchell et al. [15]:

Proposition 6.1. |e| ∈ [rf , 2R] and R ≤ rc .

Proposition 6.2. sinα ≥ |e|/2R.

Normalizing by rf , and noting that the largest angle in a triangle
is the supplement of the two smaller ones, we get the following.

Proposition 6.3. |e|/rf ∈ [1, 2β].

Proposition 6.4. α ∈ [arcsin 1/(2β), 180◦
− 2 arcsin 1/(2β)].

For example, β < 0.75 gives |e|/rf ∈ [1, 1.5] and α ∈ [41.8◦,

96.4◦
]. A value of β < 1/

√
2 ≈ 0.71 provides a non-obtuse trian-

gulation.
These hold locally; i.e., if the local value of β i for xi is smaller, it

provides tighter bounds for the edges and triangles of xi.
Fig. 11. Typical progress in β, rc/rMPS and rf /rMPS for CVT and Opt-β i .

6.2. β ratio

The main result is that Opt-β i generates the smallest β values
and the best blue noise (the most random spectra). We get a
smaller β simultaneously with a better spectrum. Opt-β i is the
best, followed by CVT, DistMesh, and then Far-Point.

Unfortunately, the speed of one iteration roughly reverses this
order: DistMesh is the fastest, followed by Lloyd’s iteration (CVT
without Liu et al.’s faster optimization [27]), Far-Point, and then
Opt-β i. One iteration of Opt-β i is 15× slower than one iteration of
standard CVT. For allmethods, the overall runtime is roughly linear
in the number of iterations. However, Opt-β i is competitive with
respect to the overall runtime. For 10,000 points in the periodic
cube, to reach β = 0.85, Opt-β i took 3.3 s and CVT took 10 s,
because CVT required more iterations.

Since we only locally optimize the local β i
= r ic/r

i
f , a somewhat

surprising result is that the global rf = mini r if is actually improved
above rMPS. Since we improved β , this implies that we have also
reduced themaximum r ic . These features can be seen from the third
and fourth columns of Table 1.

Each β i is smaller than β , so how small β can be and still have
randomness depends on the sample size. A larger sample size is
more likely to have a local case stuck at a larger value of β . One
alternative would be to consider average β i.

6.3. Spatial and spectral analysis

Figs. 7 and 9 analyze the Opt-β i output for different β val-
ues, over the periodic unit box domain. We use common spatial
and spectral measures [35,19,36,13,37,38]. For spatial analysis in
Fig. 7, the zone-plate patterns are input, andwe produce Gaussian-
filtered output via our sample sets. Since the pattern contains a
variety of spatial frequencies in different directions, it is a good
stress test to detect any sampling pattern anomalies. We also plot
the spatial samples directly for visual inspection. Opt-β i exhibits
the classic noise/alias trade-off: the smaller the β , the more uni-
form the distribution, and thus there is less noise but more alias-
ing. Fig. 9 shows the Fourier spectra, radial mean, and anisotropy.
We start to lose blue noise between β = 0.75 and β = 0.7. The
noise/alias trade-off does not apply across methods: for example,
even though CVT has a higher β than our Opt-β i β = 0.8 case, it
still produces more aliasing.

6.4. Convergence effect of small βt

Our experience is that, for values of βt above about 1/
√
2 ≈

0.71, the repositioning problem is mostly a geometry problem. For
most local configurations, changing point positions to achieve this
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(a) Input mesh. (b) Opt-β i mesh after convergence. (c) Local β distribution.

(d) Delaunay angle distribution.

Fig. 12. Applying Opt-β i on non-uniform surface mesh with linear sizing function in the z-direction. The angles distribution and local β distribution are shown for number
of iterations till convergence (or stagnation) occurs.
(a) Variation of β as the iteration proceeds. (b) Valence for different β for Opt-β i and CVT.

(c) Delaunay angles. (d) Delaunay edge length.

Fig. 13. β by iteration, and qualities by β , for Opt-β i and CVT. The input was 1000 points on a sphere.
βt is eventually possible. Below about 0.71, we see oscillatory be-
havior in Fig. 6, and the problem becomes a discrete configuration
problem. To achieve βt = 1/

√
3, each point must have exactly six

neighbors, evenly spaced on a circle around it. The six-neighbor
pattern appears at about β = 0.7 in the hexagonal shape of the
rings in the spectrum, bottom left of Fig. 9. Even with five or seven
neighbors, it is difficult to obtain a β close to 1/

√
3. In the right-
most Opt-β i example in Fig. 8, with β = 0.75, all vertices have
valences between 5 and 7.

Besides this local discrete configuration constraint, small βt
introduces global geometric constraints. The equilateral triangle
tiling has points aligned along three sets of parallel lines. These
lines constrain points that are far from one another. This is
another reason for slow (or no) convergence for small βt . Fig. 11
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Fig. 14. Meshing for various β values over a sphere surface using 1000 samples.
(a) Delaunay input mesh. (b) Voronoi input mesh. (c) Delaunay after convergence. (d) Voronoi after convergence.

(e) Local β distribution. (f) Delaunay angle distribution.

Fig. 15. Applying Opt-β i on the Fertility model with non-uniform sizing function.
shows that little progress is made beyond a certain number of
iterations.

We perform ten Nelder–Mead steps for each local optimization.
Using seven or fewer steps causes the overall algorithm to get stuck
at a larger value of β . Usingmore steps requires more runtime; ten
steps ensures both convergence and efficiency.

7. Applications

7.0.1. Meshing planar non-convex domains

WegeneratedWell-spaced Blue-noise Distributions (WBDs) for
the bounded non-convex domain in Fig. 10. This is more challeng-
ing than for a periodic square, and all four methods suffered from
boundary constraints. All methods tended to improve the quality
of most of the Voronoi cells. However, CVT and DistMesh violated
the disk-free condition. On the other hand, Far-Point violated the
coverage condition. Only Opt-β i was able to reduce the value of β
while preserving both properties. The other methods increased β
over unity within their first few iterations. The problem is harder
for the coarse mesh, because the boundary has an increased effect.
Statistics after convergence (or more precisely, after stagnation)
are given in Table 1. For Opt-β i we solved a one-dimensional ver-
sion of Nelder–Mead optimization to keep points on the boundary.
7.0.2. Meshing curved surfaces

We applied Opt-β i to a sphere and the Fertility sculpture. The
disk-free and coverage distances are geodesic. For the uniform
sphere, Fig. 14, Opt-β i reducedβ significantly, from1.0 to 0.73. This
is reflected inmore regularity in theVoronoi andDelaunaymeshes.
Using CVT, the minimum β achieved was 0.81. Fig. 13 shows the
quality measure distributions for valence, Delaunay angle, and
Delaunay edge length.

For the non-uniform sphere, Fig. 12, we used a linear sizing
function in the z-direction, varying from 0.21 to 0.01. We define
the conflicts based on the smaller-disk criteria [15]. Fig. 12 shows
that neither the Delaunay angle bounds nor the maximum global
β have changed much; instead, their distributions have changed
within about the same intervals.

We took the same approach with the Fertility model, a more
complex shape. Fig. 15 shows that we reach convergence after a
few iterations, and achieve a better angle and local β distribution.

7.1. Image filtering

Bilateral filtering is a core filtering method with a variety of
applications in graphics, vision, and image processing [39]. Similar
to traditional linear filtering, e.g. Gaussian blur, bilateral filtering
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Fig. 16. Subsampling-accelerated bilateral filtering. β = 0.75 achieves the right balance between uniformity (reducing noise) and randomness (avoiding aliasing). Notice
the noisier results with less uniform sampling (β = 2.0) and more aliasing with more regular sampling (CVT and triangle tiling). For the skull and reflection cases, we
show both the whole images and partial zoom-ins. Table 2 lists the accuracy by β . All results are produced with a kernel width of 40 pixels and 30 samples per kernel, the
recommended setting in [41].
strives to reduce noise through blending nearby pixels. However,
unlike linear filtering, which assigns filter weights based on
domain information (spatial pixel locations) only, bilateral filtering
also considers range information, such as pixel colors. This allows
better preservations of image features such as region boundaries.

The downside is that bilateral filtering is slower and more dif-
ficult to accelerate than linear filtering. Many methods have been
proposed to accelerate it [40]. Among these, subsampling [41] is
simple and effective. Instead of using all pixels, Banterle et al. [41]
select only a subset of the kernel pixels. A properly chosen sub-
set yields faster computation without a noticeable loss in output
quality. The authors of [41] experimented with various subsam-
pling methods, and concluded that Poisson-disk sampling can be
an excellent choice, due to its uniformity (reducing filtering noise)
and randomness (low aliasing). Their paper suggests that maximal
Poisson-disk sampling could be even better.

Here, we exploremaximal Poisson-disk samplingwith different
β for subsampling-accelerated bilateral filtering. Intuitively, since
a smaller β will produce more uniform and more regular distri-
butions, it has the potential to reduce noise but increase aliasing in
the filtering output. This is confirmed in Fig. 16, inwhichwe exper-
iment through a range of β , using Opt-β i (β < 1) and other meth-
ods (β ≥ 1) [15]. In our experiments it seems thatβ ∈ [0.85, 0.75]
strikes the right balance between uniformity (reducing noise) and
randomness (avoiding bias).

8. Conclusions

This paper introduced a Well-spaced Blue-noise Distribution
(WBD), with β = rc/rf measuring coverage uniformity or well-
spacedness. We proposed the Opt-β i algorithm to change a ran-
dom point set to a WBD; blue noise is preserved up to β ≈ 0.75.
We demonstrated Opt-β i’s efficacy in geometry meshing and im-
age filtering applications. We believe that themain contribution of
this paper is on the introduction andmeasurement side, andween-
vision fruitful future directions for both algorithm and application
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Table 2
Mean error and Root Mean Squared Error (RMSE) for various schemes over models
from Fig. 16.

Measure White
noise

Opt-β i , by β Triangle
tiling

2 1 0.85 0.75

Cattle skull

Mean error 0.013 0.010 0.0093 0.0089 0.0087 0.012
RMSE 0.020 0.014 0.013 0.013 0.012 0.017

Reflection

Mean error 0.020 0.013 0.012 0.011 0.010 0.016
RMSE 0.029 0.020 0.019 0.017 0.017 0.020

development. For example, generating a WBD with β < 1 from
scratch is an open problem.

Adaptive and anisotropic sampling. We kept rc and rf constant
throughout the domain, except for the sphere. In principle,
we could extend both to spatially varying functions of sample
positions, for adaptive or anisotropic sampling [42]. The spatial
and spectral properties of such adaptive/anisotropic distributions
can be analyzed by the differential domain method [37] through
local warping. It remains to formulate an optimization objective
function.

Tiling. We currently compute entire sample sets. A potential
extension is generating sample tiles [43,44,35] for acceleration.

Higher dimensions andmeshing.Wewould like to address d > 2.
Recall that MPS [33] can produce β = 1 in any dimension, but the
lower limit achieved by the densest packing is dimension depen-
dent. In this paper we focused on planar meshing. Volumetric and
general curved surface meshing would be interesting and impor-
tant extensions. Lower β provides better angles in d = 2, and bet-
ter radius-edge condition in d ≥ 2, which are helpful for a variety
of scientific and engineering applications.

Lower β . Our current algorithm can reach β ≈ 0.75. We would
like to investigate the theoretical potential of reaching even lower
values, even though these distributions may have limited utility
due to excessive regularity, as is evident from the hexagonal spec-
trumbias of theβ = 0.70 case in Fig. 9. Also, the local optimization
approach may require too much computation for small β .
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